

System Tools for Apollo Lake:

Intel® Trusted Execution
Environment 3.0

User Guide

November 2017

Revision: 1.02 Release

Intel Confidential

2 Intel Confidential

You may not use or facilitate the use of this document in connection with any infringement or other legal analysis concerning
Intel products described herein. You agree to grant Intel a non-exclusive, royalty-free license to any patent claim thereafter
drafted which includes subject matter disclosed herein.

No license (express or implied, by estoppel or otherwise) to any intellectual property rights is granted by this document.

Intel technologies’ features and benefits depend on system configuration and may require enabled hardware, software or service
activation. Learn more at Intel.com, or from the OEM or retailer.

No computer system can be absolutely secure. Intel does not assume any liability for lost or stolen data or systems or any
damages resulting from such losses.

The products described may contain design defects or errors known as errata which may cause the product to deviate from
published specifications. Current characterized errata are available on request.

Intel disclaims all express and implied warranties, including without limitation, the implied warranties of merchantability, fitness
for a particular purpose, and non-infringement, as well as any warranty arising from course of performance, course of dealing, or
usage in trade.

Intel technologies’ features and benefits depend on system configuration and may require enabled hardware, software or service
activation. Learn more at intel.com, or from the OEM or retailer.

All information provided here is subject to change without notice. Contact your Intel representative to obtain the latest Intel
product specifications and roadmaps.

Copies of documents which have an order number and are referenced in this document may be obtained by calling 1-800-548-
4725 or visit www.intel.com/design/literature.htm.

By using this document, in addition to any agreements you have with Intel, you accept the terms set forth below.

Contact your local Intel sales office or your distributor to obtain the latest specifications and before placing your product order.

Intel, vPro and the Intel logo are trademarks of Intel Corporation in the U.S. and other countries.

*Other names and brands may be claimed as the property of others.

Copyright © 2016, Intel Corporation. All rights reserved.

 Intel Confidential 3

Contents

1 Introduction .. 8

1.1 Terminology ... 8
1.2 Reference Documents .. 11

2 Preface ... 12

2.1 Overview ... 12
2.2 Image Editing Tools ... 12
2.3 Manufacturing Line Validation Tool ... 12
2.4 Intel® TXE Setting Checker Tool .. 13
2.5 Operating System Support .. 13
2.6 Generic System Requirements ... 13
2.7 Error Return ... 14
2.8 Usage of the Double-Quote Character (") .. 14
2.9 PMX Driver Limitation .. 14

3 Intel® Flash Image Tool (Intel® FIT) .. 16

3.1 System Requirements .. 16
3.2 Required Files ... 16
3.3 Intel® FIT ... 16

3.3.1 Configuration Files .. 17
3.3.2 Creating a New Configuration ... 17
3.3.3 Opening an Existing Configuration .. 17
3.3.4 Saving a Configuration .. 17
3.3.5 Environment Variables .. 17
3.3.6 Image Build Settings .. 20
3.3.7 DnX Build Settings ... 21
3.3.8 Target Platform and Flash Settings ... 22
3.3.9 Flash Layout Tab .. 22
3.3.10 Flash Settings Tab .. 23
3.3.11 Platform Protection ... 25
3.3.12 Integrated Sensor Hub .. 26
3.3.13 Download and Execute .. 26
3.3.14 GPIO Profiles ... 26
3.3.15 End Of Manufacturing State ... 27
3.3.16 Platform Configuration Tab .. 27
3.3.17 Other Configuration Tabs ... 27
3.3.18 Building a Flash Image .. 27
3.3.19 Decomposing an Existing Flash Image 28
3.3.20 Command Line Interface ... 28
3.3.21 Example – Decomposing an Image and Extracting Parameters 30

4 Flash Programming Tool .. 32

4.1 System Requirements .. 32
4.2 Microsoft Windows* Required Files ... 32
4.3 EFI Required Files ... 33
4.4 Programming the Flash Device .. 33
4.5 Programming CVARS ... 34
4.6 Usage .. 34
4.7 Fparts.txt File ... 38

4 Intel Confidential

4.8 Examples ... 39
4.8.1 Complete SPI Flash Device Burn with Binary File 39
4.8.2 Dump full image .. 39
4.8.3 Display SPI Information .. 39
4.8.4 Verify Image with Errors ... 39
4.8.5 Verify Image Successfully .. 40
4.8.6 Get Intel® TXE settings ... 40
4.8.7 Compare Intel® TXE Settings ... 40
4.8.8 CVAR Configuration File Generation (-cfggen) 40

5 Intel® TXEManuf and TXEManufWin .. 41

5.1 Windows* PE Requirements .. 41
5.2 How to Use Intel® TXEManuf ... 41
5.3 Usage .. 42

5.3.1 Host-based Tests ... 43
5.4 Intel® TXEManuf –EOL Check .. 43

5.4.1 TXEManuf.cfg File ... 43
5.4.2 TXEManuf –EOL Variable Check .. 43
5.4.3 TXEManuf –EOL Config Check... 44
5.4.4 Output/Result .. 44

5.5 Examples ... 44
5.5.1 Example for Consumer Intel® TXE FW SKU 44

6 Intel® TXEInfo ... 46

6.1 Windows* PE Requirements .. 46
6.2 Usage .. 46
6.3 Examples ... 50

6.3.1 Intel® TXE FW SKU ... 50
6.3.2 Retrieve the Current Value of the Flash Version 51

7 Intel® Platform Flash Tool ... 52

8 Intel® Manifest Extension Utility (MEU) ... 53

8.1 Introduction ... 53
8.2 Intel MEU XML .. 53
8.3 Intel MEU Configuration ... 54

8.3.1 Signing Tool Configuration ... 54
8.3.2 LZMA Compression Tool .. 55
8.3.3 User Path Variables .. 55

8.4 Supported Binary Formats .. 56
8.4.1 Binary Types ... 56
8.4.2 Example: OEM Key Manifest Creation .. 57

8.5 Creating a Public Key Hash: .. 57
8.5.1 Example: Key Hash Generation .. 58

8.6 Decomposing a Binary ... 58
8.7 Resigning a Binary ... 59
8.8 Exporting a Manifest .. 60
8.9 Importing a Manifest .. 60
8.10 Command Line Options .. 61

9 Widevine* KeyBox Provisioning Procedure ... 62

Appendix A Intel® TXE CVARs .. 64

Appendix B Tool Detail Error Codes ... 68

 Intel Confidential 5

B.1 Line Tool Error Codes ... 68

B.2 Firmware Update Errors .. 81

B.3 MEU Errors ... 82

Appendix C Tool Option Dependency on BIOS/Intel® TXE Status ... 84

Appendix D : Using Local Android* Intel® TXE System Tools .. 85

D.1 Using Android* System Tools ... 85

D.2 Setup & Install ADB and Fastboot ... 85

D.3 Using Fastboot .. 85

D.4 How to Push & Use the Intel® TXE System Tools .. 85

Appendix E : Google* Widevine for Intel® TXE ... 87

E.1 Creating Widevine* CEK (Customer Encryption Key) ... 87

E.1.1 FITC CEK File Creation Procedure ... 87

E.1.1.1 Cleartext CEK .. 87

E.1.1.2 Ciphertext CEK .. 88

E.2 Constructing Widevine* Provisioning KeyBox File .. 89

E.2.1 KeyBox Creation Procedure ... 89

Figures

Figure 3-1. Environment Variables in Build Settings Dialog 18
Figure 3-2. Image Build Settings in Build Settings Dialog 21
Figure 3-3. Flash Layout Tab ... 23
Figure 3-4. Add VSCC Table Entry Dialog ... 24
Figure 3-5. Deleting VSCC Table Entry Dialog ... 25
Figure 3-6. Platform Protection Tab .. 26

Tables

Table 2-1: OS Support for Tools ... 13
Table 3-1. Environment Variables Options ... 18
Table 3-2: Build Settings Dialog Options .. 20
Table 3-3: DnX Build Settings Dialog Options ... 21
Table 3-4: Target Platform and Flash Options ... 22
Table 3-5. Key Platform Protection Fields ... 25
Table 3-6. DnX Fields ... 26
Table 3-7. Intel FIT Command Line Options ... 28
Table 4-1: FPT OS Requirements .. 33
Table 4-2. Named Variables Options ... 34
Table 4-3. Command Line Options for fpt.efi, fpt.exe and fptw.exe 34
Table 4-4. FPT –closemnf Behavior ... 38

6 Intel Confidential

Table 5-1: Options for the Tool .. 42
Table 5-2: TXEManuf - EOL Config Tests.. 44
Table 6-1. Intel® TXEInfo Command Line Options ... 46
Table 6-2. List of Components that Intel® TXEINFO Displays 47

 Intel Confidential 7

Revision History

Revision Number Description Revision Date

0.3 Pre-Alpha Release September 2015

0.4 Updated OS matrix with Linux library support

0.6 Alpha version release

0.7 Updated OS matrix with Win10 32-bit support

Added details to MEU on key hash generation

October 2015

0.8 Updated OS matrix

Updated MEU error codes, and additional functionality

November 2015

0.81 Removed CommitFPF command, updated details of –

TXE flag, updated details of –CLOSEMNF flag

Windows 10 DT 32-bit will be supported post-TTM

Updated FIT settings location, based on Beta build

locations. Added note about Disable Boot Source FPFs.

Multiple minor clarfications and corrections

January 2016

0.85 Added Appendix on using Local Android* Intel® System

Tools

Added chapter and Appendix on Google Widevine

provisioning and processes

Added usage of –ISH –fwstat combination flag in Intel®

TXEInfo

Removal of Win10 32-bit OS support from all tools,

impacting Win10 PE 32-bit and EFI Shell 32 bit as well

Removed NFC flags from tools

April 2016

1.0 Removed all mention of Broxton July 2016

1.01 Updated FPT -CLOSEMNF June 2017

1.02 Updated Tools Error Code List and OS Support Table November 2017

§ §

Introduction

8 Intel Confidential

1 Introduction

The purpose of this document is to describe the tools that are used in the platform

design, manufacturing, testing, and validation process.

1.1 Terminology

Acronym/Term Definition

AC Alternating Current

Agent Software that runs on a client PC with OS running

API Application Programming Interface

BIN Binary file

BIOS Basic Input Output System

BIOS-FW Basic Input Output System Firmware

BIST Built In Self-Test

CLI Command Line Interface

CRB Customer Reference Board

CVAR Changeable Variable

DLL Dynamic Link Library

DNS Domain Naming System

DnX Download and Execute Technology

EC Embedded Controller

EFI Extensible Firmware Interface

EHCI Enhanced Host Controller Interface

End User The person who uses the computer (either Desktop or Mobile). The

user usually may not have administrator privileges.

EOP End Of Post

Intel® FIT Intel® Flash Image Tool

FLOCKDN Flash Configuration Lock-Down

FOV Fixed Offset Variable

Intel® FPT Intel® Flash Programming Tool

FQDN Fully Qualified Domain Name

FW Firmware

G3 A system state of Mechanical Off where all power is disconnected from

the system. A G3 power state does not necessarily indicate that RTC

power is removed.

GPIO General Purpose Input/output

Introduction

 Intel Confidential 9

Acronym/Term Definition

GUI Graphical User Interface

GUID Globally Unique Identifier

HECI

(deprecated)

Host Embedded Controller Interface

Host or Host CPU The processor running the operating system. This is different than the

processor running the Intel® TXE FW.

Host Service/

Application

An application running on the host CPU

HW Hardware

IBV Independent BIOS Vendor

ICC Integrated Clock Configuration

ID Identification

INF An information file (.inf) used by Microsoft operating systems that

support the Plug & Play feature. When installing a driver, this file

provides the OS with the necessary information about driver filenames,

driver components, and supported hardware.

Intel® DAL Intel® Dynamic Application Loader (Intel® DAL)

Intel® TXE Intel® Trusted Execution Engine. The embedded processor residing in

the chipset MCH.

Intel® TXEI driver Intel® TXE host driver that runs on the host and interfaces between

ISV Agent and the Intel® TXE HW.

ISV Independent Software Vendor

IT User Information Technology User. Typically very technical and uses a

management console to ensure multiple PCs on a network function.

LAN Local Area Network

LED Light Emitting Diode

LPC Low Pin Count Bus

CM0 Intel® TXE power state where all HW power planes are activated. Host

power state is S0.

CM1 Intel® TXE power state where all HW power planes are activated but

the host power state is different than S0. (Some host power planes are

not activated.) The Host PCI-E* interface is unavailable to the host SW.

This power state is not available in Cougar Point.

CM3 Intel® TXE power state where all HW power planes are activated but

the host power state is different than S0. (Some host power planes are

not activated.) The Host PCI-E* interface is unavailable to the host SW.

The main memory is not available for Intel® TXE use.

CM-Off No power is applied to the processor subsystem. Intel® TXE is shut

down.

MAC address Media Access Control address

MCP Multi-Chip Package (Central Processing Unit / Platform Controller Hub)

Introduction

10 Intel Confidential

Acronym/Term Definition

NM Number of Masters

NVM Non-Volatile Memory

NVRAM Non-Volatile Random Access Memory

ODM Original Device Manufacturer

OEM Original Equipment Manufacturer

OEM ID Original Equipment Manufacturer Identification

OS Operating System

OS Hibernate OS state where the OS state is saved on the hard drive.

OS not

Functional

The Host OS is considered non-functional in Sx power state in any one

of the following cases when the system is in S0 power state:

 OS is hung

 After PCI reset

 OS watch dog expires

 OS is not present

PAVP Protected Video and Audio Path

PC Personal Computer

PCI Peripheral Component Interconnect

PCIe Peripheral Component Interconnect Express

PHY Physical Layer

PID Provisioning ID

PKI Public Key Infrastructure

PM Power Management

ROM Read Only Memory

RSA A public key encryption method

RTC Real Time Clock

S0 A system state where power is applied to all HW devices and the

system is running normally.

S1, S2, S3 A system state where the host CPU is not running but power is

connected to the memory system (memory is in self refresh).

S4 A system states where the host CPU and memory are not active.

S5 A system state where all power to the host system is off but the power

cord is still connected.

SDK Software Development Kit

SHA Secure Hash Algorithm

SMBus System Management Bus

SPI Serial Peripheral Interface

SPI Flash Serial Peripheral Interface Flash

Introduction

 Intel Confidential 11

Acronym/Term Definition

Sx All S states which are different than S0

SW Software

System States Operating System power states such as S0, S1, S2, S3, S4, and S5.

UI User Interface

UMA Unified Memory Access

Un-configured

state

The state of the Intel® TXE FW when it leaves the OEM factory. At this

stage the Intel® TXE FW is not functional and must be configured.

USB Universal Serial Bus

VSCC Vendor Specific Component Capabilities

Windows* PE Windows* Pre installation Environment

XML Extensible Markup Language.

1.2 Reference Documents

Document Document No./Location

Apollo Lake- Intel®Trusted Execution

Engine (Intel®TXE) Firmware Bring-Up

Guide

Release kit

EDS CDI

Apollo Lake Soc SPI and Signed Master

Image Profile(SMIP) Programming Guide

Release kit

Apollo Lake Signing and Manifesting

Guide

Release kit

§ §

Preface

12 Intel Confidential

2 Preface

2.1 Overview

This document covers the system tools used for creating, modifying, and writing

binary image files, manufacturing testing, Intel® TXE setting information gathering,
and Intel® TXE FW updating. The tools are located in Kit directory\Tools\System
tools. For information about other tools, see the tool's user guides in the other

directories in the FW release.

The system tools described in this document are platform specific in the following

ways:

 Apollo Lake (APL) platforms – All tools in the Apollo Lake FW release kit are
designed for Apollo Lake platforms only. These tools do not work properly on any

other legacy platforms. Tools designed for other platforms also do not work
properly on the Apollo Lake platforms.

 Intel® TXE Firmware 3.0 SKU – The tools are provided for the Intel® TXE FW 3.0

SKUs.

2.2 Image Editing Tools

The following tools create and write flash images:

 Intel® FIT:

Combines the BIOS, Intel® TXE FW and other binaries into one image.

Configures SMIPs and CVARs for Intel® TXE settings that can be
programmed by a flash programming device or the FPT Tool.

 FPT:

Programs the SPI flash memory of individual regions or the entire SPI
flash device.

Modifies some Intel® TXE settings (CVAR) after Intel® TXE is flashed on
the flash memory part.

 Platform Flash Tool (using DnX)

2.3 Manufacturing Line Validation Tool

The manufacturing line validation tool (Intel® TXEManuf) allows the Intel® TXE

functionality to be tested immediately after the chipset is generated. This tool is
designed to be able to run quickly. It can run on simple operating systems, such as

EFI, Windows* 98. The Windows* version is written to run on Windows* 7, Windows*
8.1 and Win* PE 32 and 64. This tool is mostly run on the manufacturing line to do
manufacturing testing.

Preface

 Intel Confidential 13

2.4 Intel® TXE Setting Checker Tool

The Intel® TXE setting checker tool (Intel® TXEInfo) retrieves and displays information

about some of the Intel® TXE settings, the Intel® TXE FW version, and the FW

capability on the platform.

2.5 Operating System Support

Table 2-1: OS Support for Tools

Intel® TXE and
Manufacturing

Tools

E
F
I
 S

h
e
ll
 6

4
 b

it

W
in

d
o

w
s
 *

 7
 S

P
1

 3
2

b
it

W
in

d
o

w
s
*

 7
 S

P
1

 6
4

b
it

W
in

d
o

w
s
*

 P
E

 3
.1

 6
4

b
it

W
in

d
o

w
s
*

8

.1
 3

2
b

it

W
in

d
o

w
s
 8

.1
 6

4
b

it

W
in

d
o

w
s
*

 P
E

 5
.1

 6
4

b
it

W
in

d
o

w
s
*

1

0
 D

T
 6

4
b

it

W
in

d
o

w
s
 *

 1
0

 P
E
 6

4
b

it

W
in

d
o

w
s
 1

0
 M

o
b

il
e

Intel® Flash Image Tool X X X X X

Intel® Flash

Programming Tool
X X X X X X X

Intel® TXEManuf Tool X X X X X X X

Intel® TXE Info Tool X X X X X X X

Manifest Extension Tool X X X X X

Platform Flash Tool and

Token Manager Tool
 X X X X

2.6 Generic System Requirements

The installation of the following driver is required by integration validation tools that

run locally on the system under test with the Intel® TXE:

 Intel® TXEI driver.

See the description of each tool for its exact requirements.

Preface

14 Intel Confidential

2.7 Error Return
Intel® FIT and Intel® MEU return a non-0 number on an error, and the final error code

is printed.

Other tools return 0/1/2 for the error level (0 = success, 1= error, 2 = Success with

warning). A detailed error code is displayed on the screen and stored on an error.log
file in the same directory as the tools. (See Appendix B for a list of these error codes.)

2.8 Usage of the Double-Quote Character (")

The EFI version of the tools handle multi-word argument is different than the

DOS/Windows* version. If there is a single argument that consists of multiple words
delimitated by spaces, the argument needs to be entered as following:

FPT.efi –f “” arguments ””.

The command shell used to invoke the tools in EFI and Windows* has a built-in CLI.

The command shell was intended to be used for invoking applications as well as

running in batch mode and performing basic system and file operations. For this
reason, the CLI has special characters that perform additional processing upon
command.

The double-quote is the only character which needs special consideration as input. The
various quoting mechanisms are the backslash escape character (/), single-quotes ('),

and double-quotes ("). A common issue encountered with this is the need to have a
double-quote as part of the input string rather than using a double-quote to define the
beginning and end of a string with spaces.

For example, the user may want these words – one two – to be entered as a single

string for a vector instead of dividing it into two strings ("one", "two"). In that case,
the entry – including the space between the words – must begin and end with double-
quotes ("one two") in order to define this as a single string.

When double-quotes are used in this way in the CLI, they define the string to be

passed to a vector, but are NOT included as part of the vector. The issue encountered
with this is how to have the double-quote character included as part of the vector as
well as bypassed during the initial processing of the string by the CLI. This can be
resolved by preceding the double-quote character with a backslash (\").

For example, if the user wants these words to be input – input"string – the command

line is: input\"string.

2.9 PMX Driver Limitation

Several tools (Intel® TXEInfo, Intel® TXEInfo, and Intel® FPT) use the PMX library to

get access to the PCI device. Only one tool can get access to the PMX library at a time
because of library limitation. Therefore, running multiple tools to get access to PMX
library will result in an error (failure to load driver).

The PMX driver is not designed to work with the latest Windows* driver model (it does
not conform to the new driver's API architecture).

Preface

 Intel Confidential 15

In Windows* 7 (and higher), the verifier sits in kernel mode, performing continual

checks or making calls to selected driver APIs with simulations of well-known driver

related issues.

Warning: Running the PMX driver with the Windows* 7 (and higher) driver verifier turned on

causes the OS to crash. Do not include PMX as part of the verifier driver list if the user

is running Windows* 7 (and higher) with the driver verifier turned on.

§ §

Intel® Flash Image Tool (Intel® FIT)

16 Intel Confidential

3 Intel® Flash Image Tool (Intel®

FIT)

The Intel® Flash Image Tool (Intel® FIT) creates and configures a complete SPI, eMMc

or UFS flash image file for Apollo Lake platforms in the following way:

1. Intel FIT creates and allows configuration of the SPI Flash Descriptor Region,
which contains configuration information for platform hardware and FW (SPI
images only)

2. Intel FIT assembles the following into a single firmware image:

BIOS

IUnit

PMC

uCode

Intel® TXE

SMIP configuration settings

Manifest files

 SPI Flash Descriptor Region (SPI images only)

3. The user can manipulate the firmware image before its generation via a GUI or
xml file and change the various chipset parameters to match the target hardware.

Various configurations can be saved to independent files, so the user does not
have to recreate a new image each time.

Intel FIT supports a set of command line parameters that can be used to build an

image from the CLI or from a makefile. When a previously stored configuration is used

to define the image layout, the user does not have to interact with the GUI.

Note: Intel FIT just generates a complete firmware image file; it does not program the flash

device. This complete firmware image must be programmed into the flash with Intel®

FPT, DnX, any third-party flash burning tool, or some other flash burner device.

3.1 System Requirements

Intel® FIT runs on the OSs described in section 2.5. The tool does not have to run on

an Intel® TXE-enabled system.

3.2 Required Files

The Intel FIT main executable is FIT.exe. The following files must be in the same

directory as FIT.exe:

 vsccommn.bin

3.3 Intel® FIT

See the following for further information:

Intel® Flash Image Tool (Intel® FIT)

 Intel Confidential 17

 General configuration information – See the FW Bring Up Guide from the
appropriate Intel® TXE FW kit.

 Detailed information on how to configure SPI descriptor and SMIPs – See Apollo

Lake Soc SPI and Signed Master Image Profile(SMIP) Programming Guide.

3.3.1 Configuration Files

The flash image can be configured in many different ways, depending on the target

hardware and the required FW options. Intel FIT lets the user change this
configuration in a graphical manner (via the GUI). Each configuration can be saved to
an XML file. These XML files can be loaded at a later time and used to build
subsequent flash images.

3.3.2 Creating a New Configuration

Intel FIT provides a XML configuration file template that will help the user can use to
create their own configuration XML. This template configuration XML file can be
created by clicking File > New and then save. It can also be created from the

command line using –save option.

3.3.3 Opening an Existing Configuration

To open an existing configuration file:

1. Choose File > Open; the Open File dialog appears.

2. Select the XML file to load

3. Click Open.

Note: The user can also open a file by dragging and dropping a configuration file into the

main window of the application.

3.3.4 Saving a Configuration

To save the current configuration in an XML file:

Choose File > Save or File > Save As; the Save File dialog appears if the
configuration has not been given a name or if File > Save As was chosen.

1. Select the path and enter the file name for the configuration.

2. Click Save.

3.3.5 Environment Variables

A set of environment variables is provided to make the image configuration files more

portable. The configuration is not tied to a particular root directory structure because
all of the paths in the configuration are relative to environment variables. The user
can set the environment variables appropriate for the platform being used, or override
the variables with command line options.

It is recommended that the environment variables be the first thing that the user sets
when working with a new configuration. This ensures that Intel FIT can properly
substitute environment variables into paths to keep them relative. Doing this also

speeds up configuration because many of the Open File dialogs default to particular
environment variable paths.

Intel® Flash Image Tool (Intel® FIT)

18 Intel Confidential

To modify the environment variables:

1. Choose Build > Build Settings; a dialog appears displaying the current working

directory on top, followed by the current values of all the environment variables:

Table 3-1. Environment Variables Options

Option Description

$WorkingDir the directory functions as a basic path variable when modified in the

GUI. If $WorkingDir CLI flag is used when launching FIT GUI, then

the fit.log will be created in $WorkingDir directory.

$SourceDir the directory that contains the base image binary files from which a

complete flash image is prepared. Usually these base image binary

files are obtained from Intel® VIP on the Web, a BIOS programming

resource, or another source.

$DestDir the directory in which the final combined image is saved, as well as

intermediate files generated during the build. Also the directory

where the components of an image are stored when an image is

decomposed.

$UserVar1-3 used when the above variables are not populated

Figure 3-1. Environment Variables in Build Settings Dialog

Intel® Flash Image Tool (Intel® FIT)

 Intel Confidential 19

2. Click the button next to an environment variable and select the directory
where that variable's files will be stored; the name and relative path of that

directory appears in the field next to the variable's name.

3. Repeat Step 2 until the directories of all relevant environment variables have been
defined.

4. Click OK.

5. The environment variables are saved in the XML file. They can be overridden on
the command line if using the XML file on multiple systems.

Intel® Flash Image Tool (Intel® FIT)

20 Intel Confidential

3.3.6 Image Build Settings

Intel FIT lets the user set several options that control how the image is built. The

options that can be modified are described in Table 3-2.

To modify the build setting:

1. Choose Build > Build Settings; a dialog appears showing the current build

settings.

2. Modify the relevant settings in the Build Settings dialog.

3. Click OK; the modified build settings are saved in the XML configuration file.

Table 3-2: Build Settings Dialog Options

Option Description

Output filename The path and filename where the final image should be saved

after it is built. (Note: Using the $DestDir environment

variable makes the configuration more portable.)

Generate intermediate build

files

Causes the application to generate separate (intermediate)

binary files, in addition to the final image file. These files are

located in the specified output folder's INT subfolder.

Enable Boot Guard Warning

message at build time

Enables Boot Guard warning messages at build time

Enable Intel® Platform Trust

Technology messages at

build time

Enables Intel® Platform Trust Technology warning messages at

build time

Target Type If building an SPI/eMMc/UFS image

IFWI Build Version 32-bit value to use as the IFWI build version number

Manifest Extension Utility

Path

Path to the Intel MEU application, which creates and adds a

manifest to the SMIP data

Signing Tool Path Path to the signing tool (normally OpenSSL), to sign the SMIP

data

Signing Tool Name of the signing tool (normally OpenSSL) to sign the SMIP

data

Intel® Flash Image Tool (Intel® FIT)

 Intel Confidential 21

Figure 3-2. Image Build Settings in Build Settings Dialog

3.3.7 DnX Build Settings

Intel FIT lets the user set several options that control if and how a DnX image is built.

The options that can be modified are described in Table 3-2.

NOTE: In early versions of the tool, these settings are visible in the DnX tab of the

tool, and not the Build Settings Dialog.

To modify the build setting:

1. Choose Build > Build Settings; a dialog appears showing the current build
settings.

2. Modify the relevant settings in the Build Settings dialog.

3. Click OK; the modified build settings are saved in the XML configuration file.

Table 3-3: DnX Build Settings Dialog Options

Option Description

Build DnX

image

Should Intel FIT build a DnX image

DnX Output

Filename

The path and filename where the final DnX image should be saved after it is

built. (Note: Using the $DestDir environment variable makes the configuration

more portable.)

Intel® Flash Image Tool (Intel® FIT)

22 Intel Confidential

Option Description

Signing Key Private key for signing the DnX image. Must be the same private key used to

sign the OEM Key Manifest, and whose public key hash is entered into OEM

Public Key Hash field in Platform Protection tab, and which gets burned to an

FPF.

Platform ID Platform ID that DnX uses to verify the image is suitable for the platform.

OEM ID OEM ID that DnX uses to verify the image is suitable for the platform.

3.3.8 Target Platform and Flash Settings

Intel FIT lets the user define the target platform and flash type of the final image.

These options are displayed in drop-down combo boxes on the toolbar.

NOTE: In early versions of the tool, the Flash Type setting is visible in the Build

Settings Dialog.

Table 3-4: Target Platform and Flash Options

Combo Options

Target Platform Apollo Lake

Flash Type eMMc / UFS / SPI

3.3.9 Flash Layout Tab

The Flash Layout tab contains information about the various binaries that need to be

stitched together in the final image. It allows uploading the paths of these binaries
that need to be present on the same system as Intel FIT. During image compilation,
these binary files are stitched into the image.

Intel® Flash Image Tool (Intel® FIT)

 Intel Confidential 23

Figure 3-3. Flash Layout Tab

3.3.10 Flash Settings Tab

The Flash Settings tab contains information about the flash image and the target

hardware. It is important for this region to be configured correctly or the target
computer may not function as expected. This region also needs to be configured

correctly in order to ensure that the system is secure. Most of the settings here are

relevant only to SPI images, but there are also some settings relevant to eMMc or
UFS. Based on the selections in the Target Platform and Flash combo boxes, only
relevant fields will be editable.

There is a section in this tab called “Boot Source Selection” which enables the setting

of FPFs to disable boot sources that the platform will not support. Note that while
setting these FPFs can speed platform boot, since they are burned to fuses at End of
Manufacture, the system can then never be changed to boot from a different boot

source.

3.3.10.1 SPI Region Access Control

Regions of the SPI flash can be protected from read or write access by setting a

protection parameter in the Descriptor Region. The Descriptor Region must be locked
before Intel® TXE devices are shipped. If the Descriptor Region is not locked, the
Intel® TXE device is vulnerable to security attacks. The level of read/write access
provided is at the discretion of the OEM/ODM. Intel FIT gives 3 options for access

control

 full access, which is suitable for pre-production images

 Intel recommended settings, which lock the regions based on the
recommendations in the APL SPI and SMIP Programming Guide, allowing host

OS access to the PDR region.
 Intel recommended settings, which lock the regions based on the

recommendations in the APL SPI and SMIP Programming Guide, forbidding

host OS access to the PDR region.

Intel® Flash Image Tool (Intel® FIT)

24 Intel Confidential

3.3.10.2 SPI VSCC Table

This section is used to store information to setup SPI flash access for Intel® TXE. This

does not have any effect on the usage of the FPT. If the information in this section

is incorrect, Intel® TXE FW may not communicate with the flash device. The
information provided is dependent on the flash device used on the system. (For more

information, see the Apollo Lake Soc SPI and Signed Master Image Profile(SMIP)
Programming Guide, Section 6.4.)

VSCC Table can be accessed:

1. Select Flash Settings Tab on the left pan

2. Expand VSCC Entries on the right pan as shown in Figure 9 below:

3.3.10.3 Adding a New Table

To add a new table:

1. Choose on top left > VSCC Entry.

Figure 3-4. Add VSCC Table Entry Dialog

2. Enter a name into the Entry Name field. (Note: To avoid confusion it is

recommended that each table entry name be unique. There is no checking
mechanism in Intel FIT to prevent table entries that have the same name and no
error message is displayed in such cases.)

3. User can enter into the values for the flash device.

NOTES: The VSCC register value will be automatically populated by Intel FIT using the

vsccommn.bin file the appropriate information for the Vendor and Device ID.

NOTES: If the descriptor region is being built manually the user will need to reference the VSCC

table information for the parts being supported from the manufacturers’ serial flash data

sheet. The Apollo Lake SPI Programming Guide should be used to calculate the VSSC

values.

3.3.10.4 Removing an Existing VSCC Table

To remove an existing table:

1. Click on the name of the table in the top tab that the user wants to remove as
shown in Figure 12.

Intel® Flash Image Tool (Intel® FIT)

 Intel Confidential 25

Figure 3-5. Deleting VSCC Table Entry Dialog

2. Click close; the table and all of the information will be removed.

3.3.11 Platform Protection

This tab includes many settings relating to the protection of the platform, and its

integrity. In particular, it includes

Table 3-5. Key Platform Protection Fields

Option Description

SMIP

signing key

This is the path to the private key used to sign the SMIP, while public key hash

of it is included in the OEM hash manifest.

OEM Public

Key Hash

This option is for entering the raw hash string or certificate file for the SHA-256

hash of the OEM public key corresponding to the private key used to sign the

OEM Key hash manifest. When manufacture is completed, this hash value is

burned into an FPF. This value is used to verify the OEM Key hash, and also

DnX images

OEM Key

Manifest

Binary

Signed manifest file (created by Intel MEU) containing hashes of keys used for

signing components of image

There are also fields for configuring Boot Guard and Intel® PTT.

Intel® Flash Image Tool (Intel® FIT)

26 Intel Confidential

Figure 3-6. Platform Protection Tab

3.3.12 Integrated Sensor Hub

This tab allows the enabling of Integrated Sensor Hub (ISH) in the image, and

inclusion of a binary file for it.

3.3.13 Download and Execute

This tab allows the configuration of settings related to Download and Execute (DnX).

Table 3-6. DnX Fields

Option Description

DnX Enabled Permanently enable/disable DnX on the platform. This variable gets burned

into a fuse (FPF) at close of manufacture, and can never be changed after

that.

Platform ID

Platform ID that DnX uses to verify the image is suitable for the platform.

This variable gets burned into a fuse (FPF) at close of manufacture, and

can never be changed after that.

OEM ID

OEM ID that DnX uses to verify the image is suitable for the platform. This

variable gets burned into a fuse (FPF) at close of manufacture, and can

never be changed after that.

USB

configurations Series of settings for USB for DnX

3.3.14 GPIO Profiles

Intel FIT supports the configuration of up to 5 sets of GPIO profiles, as defined in the

SPI and SMIP programming guide. By default, Intel FIT creates a single profile, further

ones can be added, and extra ones removed, in the same method as VSCC tables are

Intel® Flash Image Tool (Intel® FIT)

 Intel Confidential 27

added and removed (see section 3.3.10.2). When building the image, only the first
profile is compiled into the IFWI image. All of the profiles are built as binary files, and

placed in the build output directory. They can be used later by Intel® FPT to update
the profile in the image to one of the other profiles defined within FIT.

3.3.15 End Of Manufacturing State

In SPI platforms, End of Manufacturing state is implicitly set in the image if the SPI

regions are locked with the flash settings. If the regions are not locked, End of
Manufacturing state can be set during manufacturing using the FPT tool.

On eMMc and UFS platforms, which do not have region locking, End of Manufacturing

state can be explicitly set in the Intel FIT image using a dedicated setting.

This field is un the Intel® TXE Kernel tab, in the ‘Manufacturing Settings’ section, and

is called ‘End of Manufacturing Enable’.

3.3.16 Platform Configuration Tab

The PMIC/VR Configuration option in the Platform Configuration tab is new in APL

platforms. This allows users to select from a dropdown with 4 voltage regulator (VR)

options for the Power Management IC (PMIC) supported on the platform. Selecting the
correct option is critical – the platform will not boot if the wrong one is selected.

3.3.17 Other Configuration Tabs

Intel FIT has multiple other tabs of settings that can be configured. Each one should

be opened, and the settings changed where relevant. In many cases, default values
are provided which can be retained. Each field includes help text clarifying its

meaning.

3.3.18 Building a Flash Image

The flash image can be built with the Intel FIT GUI interface.

To build a flash image with the currently loaded configuration:

 Choose Build > Build Image.

 – OR –

 Specify an XML file with the /b option in the command line.

Intel FIT uses an XML configuration file and the corresponding binary files to build the
SPI flash image. The following is produced when an image is built:

 Binary file representing the image

 Text file detailing the various regions in the image

 Optional set of intermediate files (see Section 5).

 Multiple binary files containing the image broken up according to the flash
component sizes (Note: These files are only created if two flash components are

specified.)

Intel® Flash Image Tool (Intel® FIT)

28 Intel Confidential

The individual binary files can be used to manually program independent flash devices

using a flash programmer. However, the user should select the single larger binary file

when using Intel FPT.

3.3.19 Decomposing an Existing Flash Image

Intel FIT is capable of taking an existing flash image and decomposing it in order to

create the corresponding configuration. This configuration can be edited in the GUI
like any other configuration (see below). A new image can be built from this
configuration that is almost identical to the original, except for the changes made to

it.

To decompose an image:

1. Chose File > Open.

2. Change the file type filter to the appropriate file type.

3. Select the required file and click Open; the image is automatically decomposed,
the GUI is updated to reflect the new configuration, and a folder is created with
each of the components in a separate binary file.

Note: It is also possible to decompose an image by simply dragging and dropping the file

into the main window. When decomposing an image, there are some CVARs which will

not be able to be decomposed by Intel FIT. Intel FIT will use Intel default value

instead. User might want to check the log file to find out which CVARs were not

parsed.

Note: The TXE region binary contained in INT folder after image generation only contains the

firmware default base settings for TXE region no Intel FIT customization is applied.

Note: Rebuilding an image requires access to some of the private keys used for SMIP signing

in its initial creation.

3.3.20 Command Line Interface

Intel FIT supports command line options.

To view all of the supported options: Run the application with the -? option.

The command line syntax for Intel FIT is:

fit.exe [-exp] [-h|?] [-version|ver] [-b] [-o] [-f] [-me] [-bios]

[-pdr] [-bios_overlap] [-pmcp] [-ucode1] [-ucode2]
[-iunit] [-ufs_phy] [-sd_token] [-iafw_smip] [-pmc_smip]
[-smip_key] [-meu_path] [-st_path] [-st] [-w] [-s] [-d] [-u1] [-u2] [-u3]

[-i] [-flashcount] [-flashsize1] [-flashsize2] [-save]

Table 3-7. Intel FIT Command Line Options

Option Description

-exp Displays example usage of the tool

-H or -? Displays the command line options.

Intel® Flash Image Tool (Intel® FIT)

 Intel Confidential 29

Option Description

-B Automatically builds the flash image. The GUI does not

appear if this flag is specified. This option causes the program

to run in auto-build mode. If there is an error, a valid

message is displayed and the image is not built.

If a BIN file is included in the command line, this option

decomposes it.

-O <file> Path and filename where the image is saved. This command

overrides the output file path in the XML file.

-f <file> Specifies input file. XML, full image binary, or ME only binary.

-TXE <file> Overrides the binary source file for the Intel® TXE Region with

the specified binary file.

-BIOS <file> Overrides the binary source file for the BIOS Region with the

specified binary file.

-pdr Overrides the binary source file for the PDR region

bios_overlap<true|false> Overrides the Bios region overlap setting in the XML file.

-pmcp<file> Overrides the binary source file for the PMCP region

-ucode1<file> Overrides the binary source file for the uCode1 patch

-ucode2<file> Overrides the binary source file for the uCode2 patch

-iunit<file> Overrides the binary source file for the iUnit region

-ufs_phy<file> Overrides the binary source file for the UFS PHY

-sd_token<file> Overrides the binary source file for the Secure Debug Token

-iafw_smip<file> Overrides the binary source file for the IAFW SMIP

-pmc_smip<file> Overrides the binary source file for the PMC SMIP

-smip_key<file> Overrides Key used to sign SMIP sub partition

-meu_path<path> Overrides path to Manifest Extension Utility

-st_path<path> Overrides path to Signing tool.

-st<OpenSSL |

MobileSigningUtil>

Overrides signing tool setting

-W <path> Overrides the working directory environment variable

$WorkingDir. It is recommended that the user set these

environmental variables first. (Suggested values can be found

in the OEM Bringup Guide.)

-S <path> Overrides the source file directory environment variable

$SourceDir. It is recommended that the user set these

environmental variables before starting a project.

-D <path> Overrides the destination directory environment variable

$DestDir. It is recommended that the user set these

environmental variables before starting a project.

-U1 <value> Overrides the $UserVar1 environment variable with the value

specified. Can be any value required.

-U2 <value> Overrides the $UserVar2 environment variable with the value

specified. Can be any value required.

Intel® Flash Image Tool (Intel® FIT)

30 Intel Confidential

Option Description

-U3 <value> Overrides the $UserVar3 environment variable with the value

specified. Can be any value required.

-I <enable|disable> Enables or disables intermediate file generation.

-FLASHCOUNT <0, 1 or 2> Overrides the number of flash components in the Descriptor

Region. If this value is zero, only the Intel® TXE Region is

built.

-FLASHSIZE1 <0, 1, 2, 3, 4,

5, 6 or 7>

Overrides the size of the first flash component with the size of

the option selected as follows:

0 = 512KB

1 = 1MB

2 = 2MB

3 = 4MB

4 = 8MB

5 = 16MB

6 = 32MB

7 = 64MB

-FLASHSIZE2 <0, 1, 2, 3, 4,

5, 6 or 7>

Overrides the size of the first flash component with the size of

the option selected as follows:

0 = 512KB

1 = 1MB

2 = 2MB

3 = 4MB

4 = 8MB

5 = 16MB

6 = 32MB

7 = 64MB

-Save <file> Saves the XML file.

3.3.21 Example – Decomposing an Image and Extracting

Parameters

The CVARS variables and the current value parameters of an image can be viewed by

dragging and dropping the image into the main window, which then displays the
current values of the image's parameters.

An image's parameters can also be extracted by entering the following commands into

the command line:

fit.exe -f output.bin -save output.xml

This command would create a folder named "output". The folder contains the

individual region binaries and the Map file.

The xml file contains the current Intel® TXE parameters.

The Map file contains the start, end, and length of each region.

Intel® Flash Image Tool (Intel® FIT)

 Intel Confidential 31

Note: If using paths defined in the kit, be sure to put "" around the path as the spaces cause

issues.

Note: The TXE override option changes the TXE base used on command line but still uses

the values from the xml or binary passed in.

§ §

Flash Programming Tool

32 Intel Confidential

4 Flash Programming Tool

The FPT is used to program a complete SPI image into the SPI flash device(s).

On SPI flash only, FPT can program each region individually or it can program all of

the regions with a single command. The user can also use FPT to perform various
functions such as:

 View the contents of the flash on the screen.

 Write the contents of the flash to a log file.

 Perform a binary file to flash comparison.

 Write to a specific address block.

Note: For proper function in a Multi-SPI configuration the Block Erase, Block Erase

Command and Chip Erase must all match.

On all flash types, the user can also use FPT to Program Named variables.

4.1 System Requirements

The EFI versions of FPT (fpt.efi) run on a 32-bit or 64-bit EFI environment. Ensure to

take the respective binary from within the kit.

The Windows* versions (fptw.exe and fptw64.exe) run on a 32-bit or 64-bit EFI

environment. The Windows* 64 bit version (fptw64.exe) is designed for running in
native 64 bit OS environment which does not have 32 bit compatible mode available

for example Windows*PE 64. Both versions require administrator privileges to run
under Windows* OS. The user needs to use the Run as Administrator option to

open the CLI.

FPT requires that the platform is bootable (i.e. working BIOS) and an operating

system to run on. It is designed to deliver a custom image to a computer that is
already able to boot and is not a means to get a blank system up and running. FPT

must be run on the system with the flash memory to be programmed.

One possible workflow for using FPT is:

1. A pre-programmed flash with a bootable BIOS image is plugged into a new
computer.

2. The computer boots.

3. FPT is run and a new IFWI image is written to flash.

4. The computer powers down.

5. The computer powers up, boots, and is able to access its Intel® TXE capabilities as

well as any new custom BIOS features.

4.2 Microsoft Windows* Required Files

The Microsoft Windows* version of the FPT executable is fptw.exe. The following files

must be in the same directory as fptw.exe:

Flash Programming Tool

 Intel Confidential 33

 fparts.txt – contains a comma-separated list of attributes for supported flash
devices. The text in the file explains each field. An additional entry may be

required in this file to describe the flash part which is on the target system.
Examine the target board before adding the appropriate attribute values. The

supplied file is already populated with default values for SPI devices used with

Intel CRBs.

 fptw.exe – the executable used to program the final image file into the flash.

 pmxdll.dll

 idrvdll.dll

In order for tools to work under the Windows* PE environment, you must manually

load the driver with the .inf file in the Intel® TXE driver installation files. Once you

locate the .inf file you must use the Windows* PE cmd drvload HECI.inf to load it

into the running system each time Windows* PE reboots. Failure to do so causes
errors for some features.

Table 4-1: FPT OS Requirements

FPT version Target OS Support Drivers

FPTw.EXE Windows* 32 / 64 bit w/WOW64 idrvdll.dll, pmxdll.dll

FPTW64.EXE Windows* Native 64 bit idrvdll32e.dll, pmxdll32e.dll

Note: In the Windows* environment for operations involving global reset you should add a

pause or delay when running FPTW using a batch or script file.

4.3 EFI Required Files

The EFI version of the FPT executable is fpt.efi. The following files must be in the

same directory as fpt.efi:

 fparts.txt – contains a comma-separated list of attributes for supported flash
devices. The text in the file explains each field. An additional entry may be

required in this file to describe the flash part which is on the target system.
Examine the target board before adding the appropriate attribute values. The
supplied file is already populated with default values for SPI devices used with

Intel CRBs.

 fpt.efi – the executable used to program the final image file into the flash. Before
running fpt.efi, all the required files must be placed at root directory of the disk
otherwise errors like “FPT is unable to find FPARTS.TXT “might be displayed.

4.4 Programming the Flash Device

Once the Intel® TXE is programmed, it runs at all times. Intel® TXE is capable of

writing to the flash device at any time, even when the management mode is set to

none and it may appear that no writing would occur.

Flash Programming Tool

34 Intel Confidential

4.5 Programming CVARS

FPT can program the CVARS and change the default values of the parameters. The

modified parameters are used by the Intel® TXE FW after a global reset (Intel® TXE +

HOST reset) or upon returning from a G3 state. CVARS can be programmed using
getfile/setfile/CommitFiles APIs.

The variables can be modified individually or all at once via a text file.

Note: After setting CVARs, you need to call the –commit command to ensure they are

committed. This is different to previous platforms.

Table 4-2. Named Variables Options

Option Description

fpt.exe –CVARS Displays a list of the supported manufacturing configurable named

variables (CVARs).

fpt.exe –cfggen Creates a list of blank CVARs in a text file that lets the user update

multiple line configurable CVARS. The variables have the following format

in the text file:

CVAR name = value which will be used by setfile.

fpt.exe –U –N

<CVAR name>

Accept the CVAR name

fpt.exe –IN

<Text file>

Accepts cfggen file with values set and will use setfile to update

See Appendix A for a description of all the CVAR parameters.

4.6 Usage

The EFI and Windows* versions of the FPT can run with command line options.

To view all of the supported commands: Run the application with the -? option.

The commands in EFI and Windows* versions have the same syntax. The command

line syntax for fpt.efi, fpt.exe and fptw.exe is:

FPT.exe [-H|?] [-VER] [-EXP] [-VERBOSE] [-Y] [-P] [-LIST] [-I] [-F]
[-ERASE] [-VERIFY][-NOVERIFY] [-D] [-DESC] [-BIOS] [-TXE] [-PDR]
[-B] [-E][REWRITE] [-ADDRESS|A] [-LENGTH|L]
[-CVARS] [-CFGGEN] [-U] [-O] [-IN] [-N][-V] [-CLOSEMNF] [-GRESET] [-PAGE]
[-SPIBAR] [-R] [-VARS] [-COMMIT] [-HASHED] [-FPFS] [-COMMITFPFS][-RPBIND]
[-GETPID]

Table 4-3. Command Line Options for fpt.efi, fpt.exe and fptw.exe

Option Description

Help (-H, -?) Displays the list of command line options supported by FPT tool.

-VER Shows the version of the tools.

-EXP Shows examples of how to use the tools.

Flash Programming Tool

 Intel Confidential 35

Option Description

-VERBOSE [<file>] Displays the tool's debug information or stores it in a log file.

-Y Bypasses Prompt. FPT does not prompt user for input. This

confirmation will automatically be answered with "y".

-P <file> Flash parts file. Specifies the alternate flash definition file which

contains the flash parts description that FPT has to read. By

default, FPT reads the flash parts definitions from fparts.txt.

-LIST Supported Flash Parts. Displays all supported flash parts. This

option reads the contents of the flash parts definition file and

displays the contents on the screen.

-I Info. Displays information about the image currently used in the

flash.

-F <file>

<NOVERIFY>

Flash. Programs a binary file into an SPI flash. The user needs to

specify the binary file to be flashed. FPT reads the binary, and then

programs the binary into the flash. After a successful flash, FPT

verifies that the SPI flash matches the provided image. Without

specify the length with –L option, FPT will use the total SPI size

instead of an image size.

The NOVERFY sub-option *must* follow the file name. This will

allow flashing the SPI without verifying the programming was done

correctly. The user will be prompted before proceeding unless ‘-y’

is used.

-ERASE: Block Erase. Erases all the blocks in a flash. This option does not

use the chip erase command but instead erases the SPI flash block

by block. This option can be used with a specific region argument

to erase that region. This option cannot be used with the –f, -b, -c,

-d or –verify options.

-VERIFY <file>: Verify. Compares a binary to the SPI flash. The image file name

has to be passed as a command line argument if this flag is

specified.

-D <file> : Dump. Reads the SPI flash and dumps the flash contents to a file

or to the screen using the STDOUT option. The flash device must

be written in 4KB sections. The total size of the flash device must

also be in increments of 4KB.

-DESC: Read/Write Descriptor region. Specifies that the Descriptor region

is to be read, written, or verified. The start address is the

beginning of the region.

-BIOS: Read/Write BIOS region. Specifies that the BIOS region is to be

read, written, or verified. Start address is the beginning of the

region.

Note that in APL platforms, the entire IFWI image resides in the

BIOS region.

-TXE: Read/Write Intel® TXE region. Specifies that the Intel® TXE region

is to be read, written, or verified. The start address is the

beginning of the region.

Note that in APL platforms, the entire IFWI image resides in the

BIOS region, and the TXE region in SPI is only used for TXE ROM

Bypass code.

Flash Programming Tool

36 Intel Confidential

Option Description

-PDR: Read/Write PDR region. Specifies that the PDR region is to be read,

written, or verified. The start address is the beginning of the

region.

-B: Blank Check. Checks whether the SPI flash is erased. If the SPI

flash is not empty, the application halts as soon as contents are

detected. The tool reports the address at which data was found.

-E: Skip Erase. Does not erase blocks before writing. This option skips

the erase operation before writing and should be used if the part

being flashed is a blank SPI flash device.

-A<value>, -ADDRESS

<value>

Write/Read Address. Specifies the start address at which a read,

verify, or write operation must be performed. The user needs to

provide an address. This option is not used when providing a

region since the region dictates the start address.

-L <value>, LENGTH

<value>

Write/Read Length. Specifies the length of data to be read, written,

or verified. The user needs to provide the length. This option is not

used when providing a region since the region/file length

determines this.

-CVARS: Lists all the current manufacturing line configurable variables.

-U: Update. Updates the CVARs in the flash. The user can update the

multiple FOVs by specifying their names and values in the

parameter file. The parameter file must be in an INI file format

(the same format generated by the –cfggen command). The -in

<file> option is used to specify the input file.

-O <file> Output File. The file used by FPT to output CVAR information.

-IN <file> Input File. The file used by FPT for CVAR input. This option flag

must be followed by a text file (i.e., fpt –u –in FPT.cfg). The tool

updates the CVARs contained in the text file with the values

provided in the input file.

User can also use FPT –cfggen to generate this file.

-N <value> Name. Specifies the name of the CVAR that the user wants to

update in the image file or flash. The name flag must be used with

Value (-v).

-V <value> Value. Specifies the value for the CVAR variable. The name of

variable is specified in the Name flag. The Value flag must follow

the Name flag.

-CLOSEMNF <NO>

<PDR>

End of Manufacturing. This option must be executed at the end of

manufacturing.

CloseMnf does the following:

Commits all FPFs

Sets SOC Config lock (SOC_Config_Lock FPF)

Sets all ‘Return to Factory Defaults’ to default values

Sets the Intel® TXE manufacturing mode done bit (Global Locked

bit).

For SPI, sets the master region access permission in the Descriptor

region to its Intel-recommended value, and verifies that flash

regions are locked.

Flash Programming Tool

 Intel Confidential 37

Option Description

If the image was properly set before running this option, FPT skips

all of the above and reports PASS. If anything was changed, FPT

automatically forces a global reset. The user can use the no reset

option to bypass the reset. If nothing was changed, based on the

current setting, the tool reports PASS without any reset.

The "NO" addition will prevent the system from doing a global reset

following a successful update of the TXE Manufacturing Mode Done,

the Region Access permissions, or both.

The "PDR" addition will allow CPU\BIOS Read & Write access to the

PDR region of flash.

Note: This step is highly recommended to the manufacturing

process. Not performing the proper end of manufacturing process

would leave the platform with potential security/privacy risks.

Important:

Before using this option with Production MCP / FW verify that the

values for PTT are correct in your image. Once this setting is used

it will permanently commit the values into the Field Programmable

Fuses and cannot be undone.

-GRESET <NO> : Global Reset. FPT performs a global reset. On mobile platforms this

includes driving GPIO30 low. Mobile platforms require a SUS Well

power-down acknowledge-driven low before the global reset occurs

or the platform may not boot up from the reset.

The "NO" afterwards disables the driving of GPIO30 for mobile

SKUs.

-CFGGEN CVAR Input file generation option. This creates a file which can be

used to update the line configurable CVARS.

-SPIBAR: Display SPI BAR. FPT uses this option to display the SPI Base

Address Register.

-R <name> CVAR or FPF Read. FPT uses this option to retrieve value for a

specific CVAR or FPF file name. The value of the variable is

displayed. By default, all non- secure variables are displayed in

clear-text and secure CVAR will be displayed in HASH. The -hashed

option can be used to display the hash of a value instead of the

clear-text value.

-VARS: Display Supported Variables. FPT uses this option to display all

variables supported for the -R and -COMPARE commands.

-COMMIT: Commit. FPT uses this option to commit all setfile commands

CVARs changes to CVAR and cause relevant reset accordingly If no

pending variable changes are present, Intel® TXE does not reset

and the tool displays the status of the commit operation.

-COMMITFPF Commits CVAR values to FPF via firmware and prevents further

modification of FPFs

-PAGE Pauses the screen when a page of text has been reached. Hit any

key to continue.

Flash Programming Tool

38 Intel Confidential

Option Description

-HASHED: Hash Variable Output. FPT uses this option to distinguish whether

the displayed output is hashed by the FW. For variables that can

only be returned in hashed form this option has no effect – the

data displayed is hashed regardless.

-FPFS Displays a list of the FPFs

-COMMITFPFS<name> Commit the FPFs permanently into the MCP.

-REWRITE Allows to rewrite the SPI with file data even if flash is identical.

-RPBIND Bind RP

-GETPID Retrieve the part id into a file

Table 4-4. FPT –closemnf Behavior

Condition before FPT -
closemnf

Condition after FPT -closemnf Other FPT
Action

Intel

TXE

Mfg

Done

bit set

Flash

Access set

to Intel

rec values

Intel TXE

Mfg Mode

Intel

TXE

Mfg

Done

bit set

Flash

Access set

to Intel rec

values?

Intel TXE

Mfg Mode

FPT

return

value

**

Global

Reset

No No Enabled Yes Yes Disabled 0 Yes

No Yes Enabled No Yes Enabled 1 No

Yes No Enabled Yes Yes Disabled 0 Yes

Yes Yes Disabled Yes Yes Disabled 0 No

** Return value 0 indicates successful completion. In the second case, FPT –closemnf returns 1

(= error) because it is unable to set the Intel TXE Mfg Done bit, because flash permissions are

already set to Intel recommended values (host cannot access Intel TXE Region).

4.7 Fparts.txt File

The fparts.txt file contains a list of all SPI flash devices that are supported by FPT.

The flash devices listed in this file must contain a 4KB erase block size. If the flash

device is not listed, the user will receive the following error:

Intel (R) Flash Programming Tool. Version: x.x.x.xxxx
Copyright (c) 2007-2014, Intel Corporation. All rights reserved.
Platform: Intel(R) Qxx Express Chipset

Error 75: ‘‘fparts.txt’’ file not found.

If the SPI flash device is not located in fparts.txt, the user is expected to provide

information about the device, inserting the values into fparts.txt in same format as is

used for the rest of the devices. Detailed information on how to derive the values in
fparts.txt is found in the Apollo Lake SPI Programming Guide. The device must have
a 4KB erase sector and the total size of the SPI Flash device must be a multiple of

4KB. The values are listed in columns in the following order:

 Display name

 Device ID (2 or 3 bytes)

Flash Programming Tool

 Intel Confidential 39

 Device Size (in bits)

 Block Erase Size (in bytes - 256, 4K, 64K)

 Block Erase Command

 Write Granularity (1 or 64)

 Unused

4.8 Examples

The following examples illustrate the usage of the EFI version of the tool (fpt.efi). The

Windows* version of the tool (Fptw.exe) behaves in the same manner apart from
running in a Windows* environment.

4.8.1 Complete SPI Flash Device Burn with Binary File

C:\ fpt.exe --f spi.bin

EFI:
>fpt.efi --f spi.bin or fs0:\>fpt.efi --f spi.bin

This command writes the data in the spi.bin file into a whole SPI flash from address

0x0

4.8.2 Dump full image

fpt.exe –d imagedump.bin

This command dumps the full image into the imagedump.bin file.

4.8.3 Display SPI Information

fptw.exe --I

This command displays information about the flash devices present in the computer.

The base address refers to the start location of that region and the limit address refers
to the end of the region. If the flash device is not specified in fparts.txt, FPT returns

the error message "There is no supported SPI flash device installed".

4.8.4 Verify Image with Errors

fpt.exe -verify outimage.bin

This command compares the Intel® TXE region programmed on the flash with the

specified FW image file outimage.bin. If the -y option is not used; the user is
notified that the file is smaller than the binary image. This is due to extra padding that
is added during the program process. The padding can be ignored when performing a
comparison. The -y option proceeds with the comparison without warning.

Flash Programming Tool

40 Intel Confidential

4.8.5 Verify Image Successfully

fpt.exe -verify outimage.bin

This command compares image.bin with the contents of the flash. Comparing an

image should be done immediately after programming the flash device. Verifying the
contents of the flash device after a system reset results in a mismatch because Intel®
TXE changes some data in the flash after a reset.

4.8.6 Get Intel® TXE settings

fpt.exe –r “Privacy/SecurityLevel”

Please note that only –r (get command) supports the –hashed optional command

argument. When –hashed is used, variable value will be returned in hashed format,
otherwise it will be returned in clear txt. There are a few exceptions in the case of
variables PID and PPS, their value will be always returned in hashed format regardless

–hashed is used or not. This is primarily because of security concern.

4.8.7 Compare Intel® TXE Settings

FPT –verbose –compare vars.txt compares variables with suggested values in vars.txt,

and report result on the screen. Vars.txt can have the following data with verbose
information: FPT –VARS can be used to get the VAR list for the platform and get the

value/format from Intel FIT advanced mode. There are settings in the Intel® TXE
which are stored encrypted. Users will not be able to compare them using clear text

values. Please use FPT –R option to read the hash value of those settings and use

them as baseline for the expected value.

4.8.8 CVAR Configuration File Generation (-cfggen)

It creates an input file which can be used to update CVARs. The file includes all the

current CVAR. When creating the file, it extracts the fixed offset variables from flash.
Note, the file generated will change every time the list of CVAR changes.

fpt.exe --cfggen [-o <Output Text File>][options]

-o <Output File Name> The desired name of the file

generated. If none is provided the
default, fpt.cfg, will be used.

-p < file name > Alternate SPI Flash Parts list file.
-page Pauses at screen / page / window

boundaries. Hit any key to continue.
-Verbose [<file name>] Displays more information.
-y Will not pause to user input to

continue

§ §

Intel® TXEManuf and TXEManufWin

 Intel Confidential 41

5 Intel® TXEManuf and

TXEManufWin

Intel® TXEManuf validates Intel® TXE functionality on the manufacturing line. It

verifies that these components have been assembled together correctly.

The Windows* version of Intel® TXEManufWin (Intel® TXEManufWin) requires

administrator privileges to run under Windows* OS. The user needs to use the Run
as Administrator option to open the CLI.

Intel® TXEManuf validates all components and flows that need to be tested according

to the FW installed on the platform in order to ensure the functionality of Intel® TXE
applications: BIOS-FW, Flash, etc. This tool is meant to be run on the manufacturing

line.

5.1 Windows* PE Requirements

In order for tools to work under the Windows* PE environment, you must manually

load the driver with the .inf file in the Intel® TXEI driver installation files. Once you

locate the .inf file you must use the Windows* PE cmd drvload HECI.inf to load it

into the running system each time Windows* PE reboots. Failure to do so causes
errors for some features.

5.2 How to Use Intel® TXEManuf

Intel® TXEManuf checks the FW SKU and runs the proper tests accordingly unless an

option to select tests is specified.

Intel® TXEManuf is intelligent enough to know if it should run the test or report a

result. If there is no test result available for an Intel® TXE enabled platform,

TXEManuf calls the test. Otherwise, it reports the result or the failure message from
the previous test.

Intel® TXEManuf tools report the result or cause a reboot. If there is a reboot, Intel®

TXEManuf should be run again.

VSCCCOMMN.bin is required to verify the VSCC entry on the platform. This file must

be in same folder as the TXEManuf executable or TXEManuf reports an error.

Intel® TXEManuf and TXEManufWin

42 Intel Confidential

5.3 Usage

The DOS version of the tool can be operated using the same syntax as the Windows*

version. The Windows* version of the tool can be executed by:

TXEManuf [-EXP] [-H|?] [-VER] [-TEST] [-S0]
 [-BISTRESULT] [-EOL] [-CFGGEN] [-F] [-VERBOSE] [-PAGE]
 [-ERRLIST] [-ALL][-NOISH] [-ISH]

Table 5-1: Options for the Tool

Option Description

No option Test result will be reported back right after the test is done and cleared.

If BIST test result isn’t displayed after BIST test is done, the tool needs

to be run again (with or without any BIST related argument

combinations) to retrieve the result, once test result is displayed, it will

be cleared.

Tool is capable of remembering whether/what tests (including host based

tests) have been run from previous invocation. Host based tests will be

run for all cases (whether it’s retrieving test result or run the actual

BIST).

-EXP Shows examples of how to use the tools.

-H or -? Displays the help screen.

-VER Shows the version of the tools.

-TEST Run full test

-S0 Run BIST test that does not require power cycle

-BISTRESULT Returns last BIST results

-EOL

<Var|Config> -

F <filename>

This option runs several checks for the use of OEMs to ensure that all

settings and configurations have been made according to Intel

requirements before the system leaves the manufacturing process. The

check can be configured by the customer to select which test items to run

and their expected value (only applicable for Variable Values, FW Version,

BIOS Version). The sub option config or var is optional. Using -EOL

without a sub option is equivalent to the –EOL config.

When –f flag is used along with a file name, the tool will load the file as

the configuration file, instead of using TXEManuf.cfg.

-CFGGEN

<filename>

Use this option along with a filename to generate a default configuration

file. This file (with or without modification) can be used for the -EOL

option. Rename it TXEManuf.cfg before using it. It is highly

recommended to use this option to generate a new TXEManuf.cfg with an

up-to-date variable names list before using the Intel® TXEManuf End-Of-

Line check feature.

-F <filename> Load customer defined .cfg file

-VERBOSE

<file>

Displays the debug information of the tool or stores it in a log file.

–PAGE When it takes more than one screen to display all the information, this

option lets the user pause the display and then press any key to continue

on to the next screen.

-ERRLIST <test

name>

Return a list of available codes

Intel® TXEManuf and TXEManufWin

 Intel Confidential 43

Option Description

-NOISH This option will skip ISH tests

-ISH This option will force ISH tests

5.3.1 Host-based Tests

1. TXE/BIOS VSCC validation, Intel® TXEManuf verifies that flash SPI ID on the
system is described in VSCC table. If found, VSCC entry for relevant SPI part

should match the known good values that pre-populated in the file.

2. Intel® TXE state check, Intel® TXEManuf verifies Intel® TXE is in normal state.
This is done by checking the value of 4 fields (initialization state, mode of

operation, current operation state, and error state) in FW status register1. If
any of these fields indicates Intel® TXE is in abnormal state, Intel® TXEManuf
will report error without running BIST test.

5.4 Intel® TXEManuf –EOL Check

TXEManuf --EOL check is used to give customers the ability to check Intel® TXE-

related configuration before shipping. There are two sets of tests that can be run:
variable check and configuration check. Variable check is very similar as FPT –
compare option. Please refer that section.

5.4.1 TXEManuf.cfg File

The TXEManuf.cfg file includes all the test configurations for TXEManuf --EOL check. It

needs to be at the same folder that TXEManuf is run. If there is no TXEManuf.cfg file

on that folder, TXEManuf --EOL config runs the Intel recommended default check
only.

The default xml configuration file can be created by running the –CFGGEN command.

Lines which start with // are comments. They are also used to inform users of the

available test group names and the names of specific checks that are included in each

test that Intel® TXEManuf recognizes.

To select which test items to run: Create a line that begins with

SubTestName="<specific sub test name>".

5.4.2 TXEManuf –EOL Variable Check

TXEManuf --EOL variable check is designed to check the Intel® TXE settings on the

platform before shipping. To minimize the security risk in exposing this in an end-user

environment, this test is only available in Intel® TXE manufacturing mode or No EOP
Message Sent.

NOTES: -EOL Variable check. The system must be in Intel® TXE manufacturing mode when

 -EOL Variable check is run or No EOP Message Sent.

Intel® TXEManuf and TXEManufWin

44 Intel Confidential

5.4.3 TXEManuf –EOL Config Check

TXEManuf --EOL Config check is designed to check the Intel® TXE-related

configuration before shipping. Running Intel-recommended tests before shipping is

highly recommended.

Table 5-2: TXEManuf - EOL Config Tests

Test Expected Configuration

EOP status check Enabled

Intel® TXE VSCC check Set according to the Intel-recommended value

BIOS VSCC check Set according to the Intel-recommended value

Intel® TXE Manufacturing Mode status Disabled

Flash Region Access Permissions Set according to the Intel-recommended value

Note: --EOL Config check. If the system is in Intel® TXE manufacturing mode when

 --EOL Config check is run there will be an error report or No EOP Message Sent.

5.4.4 Output/Result

The following test results can be displayed at the end-of-line checking:

 Pass – all tests passed

 Pass with warning – all tests passed except the tests that were modified by the

customer to give a warning on failure. (This modification does not apply to Intel-

recommended tests

 Fail with warning - all tests passed except some Intel-recommended tests that
were modified by the customer to give a warning on failure.

 Fail - any customer-defined error occurred in the test.

5.5 Examples

5.5.1 Example for Consumer Intel® TXE FW SKU

TXEManuf --verbose

Intel(R) TXEManuf Version: 3.0.0.1044

Copyright(C) 2005 - 2015, Intel Corporation. All rights reserved.

FW Status Register1: 0x82000255

FW Status Register2: 0x80100000

FW Status Register3: 0x30550607

FW Status Register4: 0x00080000

FW Status Register5: 0x80018001

FW Status Register6: 0x00000000

Intel® TXEManuf and TXEManufWin

 Intel Confidential 45

 CurrentState: Normal

 ManufacturingMode: Enabled

 FlashPartition: Valid

 OperationalState: CM0 with UMA

 InitComplete: Complete

 BUPLoadState: Success

 ErrorCode: No Error

 ModeOfOperation: Normal

 SPI Flash Log: Not Present

 Phase: Maestro

 TXE File System Corrupted: No

 FPF and TXE Config Status: Not committed

FW Capabilities value is 0xFBA200

Feature enablement is 0xFBA200

Platform type is 0x2000441

Feature enablement is 0x71101840

TXE initialization state valid

TXE operation mode valid

Current operation state valid

TXE error state valid

MFS is not corrupted

PCH SKU Emulation is correct

Request Intel(R) TXE BIST status command... done

Get Intel(R) TXE test data command... done

Get Intel(R) TXE test data command... done

Total of 7 Intel(R) TXE test result retrieved

Policy Kernel - Boot Guard : Self Test - Passed

Policy Kernel - Embedded Controller : Power source type - Passed

MCA - MCA Tests : Blob - Passed

MCA - MCA Tests : MCA Manuf - Passed

VDM - General : VDM engine - Passed

Policy Kernel - ME Password : Validate MEBx password - Passed

Clear Intel(R) TXE test data command... done

TXEManuf Operation Passed

Intel® TXEInfo

46 Intel Confidential

6 Intel® TXEInfo

TXEInfoWin and Intel® TXEInfo provide a simple test to check whether the Intel® TXE

FW is alive. Both tools perform the same test; query the Intel® TXE FW– and retrieve
data.

Table 18 contains a list of the data that each tool returns.

The Windows* version of TXEInfo (TXEInfoWin) requires administrator privileges to

run under Windows* OS. The user needs to use the Run as Administrator option to
open the CLI.

6.1 Windows* PE Requirements

In order for tools to work under the Windows* PE environment, you must manually

load the driver with the .inf file in the Intel® TXEI driver installation files. Once you

locate the .inf file you must use the Windows* PE cmd drvload HECI.inf to load it

into the running system each time Windows* PE reboots. Failure to do so causes
errors for some features.

6.2 Usage

The executable can be invoked by:

TXEInfo.exe [-EXP] [-H|?] [-VER] [-FITVER] [-FEAT]

 [-VALUE] [-FWSTS] [-VERBOSE] [-PAGE] [-NOISH] [-ISH]

Table 6-1. Intel® TXEInfo Command Line Options

Option Description

-FEAT < name>

-VALUE <value>

Compares the value of the given feature name with the value in the

command line. If the feature name or value is more than one word,

the entire name or value must be enclosed in quotation marks. If

the values are identical, a message indicating success appears. If

the values are not identical, the actual value of the feature is

returned. Only one feature may be requested in a command line.

-FITVER Displays Intel FIT version information

-FEAT <name> Retrieves the current value for the specified feature. If the feature

name is more than one word, the entire feature name must be

enclosed in quotation marks. The feature name entered must be

the same as the feature name displayed by Intel® TXEINFO.

Intel® TXEINFO can retrieve all of the information detailed below.

However, depending on the SKU selected, some information may

not appear.

Note: For the EFI shell version you need to add additional “^” to

enclose the text string in order for it to be properly parsed.

Example: TXEINFO.efi –feat “^”BIOS boot state”^”

Intel® TXEInfo

 Intel Confidential 47

Option Description

–FWSTS Decodes the Intel® TXE FW status register value field and breaks it

down into the following bit definitions for easy readability:

FW Status Register1: 0x1E000255

FW Status Register2: 0x69000006

CurrentState: Normal

ManufacturingMode: Enabled

FlashPartition: Valid

OperationalState: CM0 with UMA

InitComplete: Complete

BUPLoadState: Success

ErrorCode: No Error

ModeOfOperation: Normal

-VERBOSE <filename> Turns on additional information about the operation for debugging

purposes. This option has to be used together with the above

mentioned option(s). Failure to do so generates the error: "Error

9254: Invalid command line option".

This option works with no option and -feat.

-H or -?: Displays the list of command line options supported by the Intel®

TXEINFO tool.

-VER Shows the version of the tools.

- PAGE When it takes more than one screen to display all the information,

this option lets the user pause the display and then press any key

to continue on to the next screen.

-EXP Shows examples about how to use the tools.

-ISH This shows ISH information

Using the combination flags –ISH –fwstat you can retrieve the ISH

firmware status

-NOISH Do not display any information related to ISH

No option: If the tool is invoked without parameters, it reports information for

all components listed in Table 6-2 below for full SKU FW.

Table 6-2. List of Components that Intel® TXEINFO Displays

Feature
Name

Feature Data
Source (Intel®

TXE
Kernel/SW/

Other)

Specific
Feature

Dependency

Field Value

Tools Version SW (Intel®

TXEInfo)

N/A Version string

Example:

11.x.y.ZZZZ; where x=minor,

y = HF/MR, ZZZZ = Build

Number.

VendorID Intel® TXE Kernel N/A A number (in Hex)

PCH Version Intel® TXE Kernel N/A A version string

Intel® TXEInfo

48 Intel Confidential

Feature
Name

Feature Data
Source (Intel®

TXE
Kernel/SW/

Other)

Specific
Feature

Dependency

Field Value

FW Version Intel® TXE Kernel N/A Version string

11.x.y.ZZZZ; where x=minor,

y = HF/MR, ZZZZ = Build

Number.

Intel® TXE

Driver version*

Other (Reading

Windows* registry

entries

Only when

Windows* Intel®

TXE driver is

installed

A version string

IFWI Module

Version

Intel® TXE Kernel N/A A version string

Number of

IFWI Modules

Intel® TXE Kernel N/A A number

IFWI Module

Name

Intel® TXE Kernel N/A A string

FW Capabilities Intel® TXE Kernel N/A Combination of feature name

list breakdown (with a

Hexadecimal value)

*This is a display of the Feature

State for the Intel® TXE. Is

enabled / disabled on the

system. Each bit in the value

represents a feature state.

Last Intel® TXE

Reset Reason

Intel® TXE Kernel N/A Power up/

Firmware reset/

Global system reset/

Unknown

BIOS Lock Other (Directly

reading from SPI)

N/A Enabled/Disabled/

Unknown

If shown as enabled, both

FLOCKDN for BIOS are set.

If shown as disabled, either/all

FLOCKDN for BIOS are not set.

Host Read

Access to

Intel® TXE

Other (Directly

reading from SPI)

N/A Enabled/Disabled/

Unknown

Host Write

Access to

Intel® TXE

Other (Directly

reading from SPI)

N/A Enabled/Disabled/

Unknown

SPI Flash ID Other (Directly

reading from SPI)

Only when there

are SPI flash

parts HW

installed

A JEDEC ID number (in Hex)

TXE/BIOS

VSCC register

values

Other (Directly

reading from SPI)

Only when there

are flash parts

HW installed

A 32bit VSCC number (in Hex)

Intel® TXEInfo

 Intel Confidential 49

Feature
Name

Feature Data
Source (Intel®

TXE
Kernel/SW/

Other)

Specific
Feature

Dependency

Field Value

BIOS Boot

State

Intel® TXE Kernel N/A Pre Boot/

In Boot/

Post Boot

Capability

Licensing

Service

Intel® TXE Kernel Not shown unless

Fw feature

capability

supports it

Enabled/Disabled

OEM Tag Intel® TXE Kernel N/A A 32bit Hexadecimal number

Report on

Revenue

Sharing ID

Fields

Intel® TXE Kernel

Firmware Host

Interface

N/A 3 slot of 32-bit integer values

(in Hex)

FWSTS Intel® TXE Kernel N/A Two 32bit Hexadecimal

numbers and their bit definition

breakdown

OEM Public Key

Hash FPF

Intel® TXE Kernel BIOS Yes / No

OEM Public Key

Hash TXE

Intel® TXE Kernel BIOS SHA-256bit Hash entry

ACM SVN FPF Intel® TXE Kernel BIOS

KM SVN FPF Intel® TXE Kernel BIOS

BSMM SVN FPF Intel® TXE Kernel BIOS

GuC Encryption

Key TXE

Intel® TXE Kernel BIOS 256-bit string

Protect BIOS

Environment

Intel® TXE Kernel BIOS Yes / No

CPU Debugging Intel® TXE Kernel BIOS Enabled / Disabled

BSP

Initialization

Intel® TXE Kernel BIOS Enabled / Disabled

Measured Boot Intel® TXE Kernel BIOS Yes / No

Verified Boot Intel® TXE Kernel BIOS Yes / No

Key Manifest ID Intel® TXE Kernel BIOS Hash of Public Key to verify

Boot Policy Manifest

PTT Intel® TXE Kernel BIOS Enabled / Disabled

EK Revoke Intel® TXE Kernel BIOS Revoked / Not Revoked

Integrated

Sensor Solution

FW State

ISH ISH Firmware Responding / Not Responding

FW Status ISH ISH Firmware Sensors Apps Responding /

Sensor Apps Not Responding

Intel® TXEInfo

50 Intel Confidential

Feature
Name

Feature Data
Source (Intel®

TXE
Kernel/SW/

Other)

Specific
Feature

Dependency

Field Value

Integrated

Sensor Solution

FW Version

ISH ISH Firmware Version string

Module Status ISH ISH Firmware Module x Status: Loaded / Not

Loaded

Extended

Modules FW

Status

ISH ISH Firmware Version string

Extended

Modules FW

Versions

ISH ISH Firmware Version string

HECI Driver

Version

ISH ISH Firmware Version string

PCI Bus Driver

Version

ISH ISH Firmware Version string

Integrated

Sensor Solution

Driver Version

ISH ISH Firmware Version string

Sensors

Information

ISH ISH Firmware Information on the various

Sensors configured on the

platform.

6.3 Examples

This is a simple test that indicates whether the FW is alive. If the FW is alive, the test

returns device-specific parameters. The output is from the Windows* version.

6.3.1 Intel® TXE FW SKU

TXEINFOWIN.exe

Intel(R) TXEInfo Version: 3.0.0.1044

Copyright(C) 2005 - 2015, Intel Corporation. All rights reserved.

Intel(R) TXE code versions:

BIOS Version APLK_IFWI_X64_R_2015_39_4_00

Vendor ID 8086

PCH Version 3

FW Version 3.0.0.1044 Unknown

TXEI Driver Version 3.0.0.1044

IFWI Module Version 3.0.0.1044

Number of IFWI Modules 0

IFWI Module Name

FW Capabilities 0x71101840

 Intel(R) Capability Licensing Service - PRESENT/ENABLED

Intel® TXEInfo

 Intel Confidential 51

 Protect Audio Video Path - PRESENT/ENABLED

 Intel(R) Dynamic Application Loader - PRESENT/ENABLED

 Service Advertisement & Discovery - PRESENT/ENABLED

 Intel(R) Platform Trust Technology - PRESENT/ENABLED

TLS Disabled

Last TXE reset reason Power up

BIOS Config Lock Disabled

Host Read Access to TXE Enabled

Host Write Access to TXE Enabled

Host Read Access to EC Disabled

Host Write Access to EC Disabled

SPI Flash ID 1 EF6018

SPI Flash ID 2 Unknown

BIOS boot State Post Boot

Capability Licensing Service Enabled

OEM Tag 0x00000000

Slot 1 Board Manufacturer 0x00000000

Slot 2 System Assembler 0x00000000

Slot 3 Reserved 0x00000000

M3 Autotest Disabled

EPID Group ID 0x4DC

Replay Protection Not Supported

Replay Protection Counters 0

Storage Device Type SPI

OEM Public Key Hash FPF Not set

OEM Public Key Hash TXE Not set

ACM SVN FPF Not set

KM SVN FPF Not set

BSMM SVN FPF Not set

GuC Encryption Key FPF Not set

GuC Encryption Key TXE Not set

 FPF TXE

 --- --

Protect BIOS Environment Not set Not set

CPU Debugging Not set Not set

BSP Initialization Not set Not set

Measured Boot Not set Not set

Verified Boot Not set Not set

Key Manifest ID Not set Not set

Enforcement Policy Not set Not set

PTT Not set Not set

EK Revoke State Not set

6.3.2 Retrieve the Current Value of the Flash Version

C:\ TXEINFO.exe -feat "BIOS boot state"
Intel(R) TXEInfo Version: 3.0.0.1044
Copyright(C) 2005 - 2015, Intel Corporation. All rights reserved.

BIOS boot State: Post Boot

§ §

Intel® Platform Flash Tool

52 Intel Confidential

7 Intel® Platform Flash Tool

The Platform Flash Tool is included with a dedicated installer in the firmware kit. It

includes its own documentation, covering usage of DnX to flash firmware on eMMC
and UFS flash devices, as well as secure token creation.

§ §

Intel® Manifest Extension Utility (MEU)

 Intel Confidential 53

8 Intel® Manifest Extension

Utility (MEU)

8.1 Introduction

This chapter covers in detail the usage of the Intel Manifest Extension Utility (MEU).

Intel MEU is a tool used to generate various binaries containing manifests which will

be validated by the TXE FW. Intel MEU can call an external signing tool, such as
OpenSSL, to sign the manifests in the final binary.

Depending on the binary type being generated, the contents may be stitched into an

IFWI image using the Intel Flash Image Tool (Intel FIT), or the contents may be
passed to the TXE FW at runtime by a driver. Intel FIT may also call Intel MEU to add
a signed manifest to a binary it is generating.

The usage flow of the Intel MEU to add manifests, sign binaries, and build images for

the Apollo Lake platforms is explained in the Apollo Lake Signing and Manifesting

Guide.

8.2 Intel MEU XML

When generating a binary, Intel MEU consumes two XML files. One is for tool

configuration, the other is used to configure the binary being generated.

This section describes the requirements associated with these XML files.

Each XML file has a root node which tells the tool what type of XML file this is. For

example, the Intel MEU configuration XML contains MeuConfig as the root node:

<?xml version="1.0" encoding="utf-8"?>

<MeuConfig version="2.3">

 ...

</MeuConfig>

The root node also contains a version attribute. Intel MEU will use the value to
detect if the XML was generated with an older and incompatible version of MEU.

Underneath the root node, there will be config nodes, these may be grouped into
sections, for example:

<VersionExtraction>

Intel® Manifest Extension Utility (MEU)

54 Intel Confidential

 <Enabled value="false" value_list="true,,false" help_text="If

enabled, the version details will be extracted from the InputFile

binary at the offsets specified. If disabled, the version must be

specified manually.">

 <InputFile value="" help_text="Binary file from which to

extract the version details.">

 ...

</VersionExtraction>

The config nodes may have multiple attributes, in general only the value attribute is
looked at by the tool, while the other attributes are for the user’s information:

 value - Used to configure a value for the given setting. If the setting is an enum,
the value must match one of the values in value_list. If the setting is a number
the value may be entered in decimal (256) or by hex using a 0x prefix (0x100).

 value_list - Contains a double-comma separated list of valid values.

 help_text - Contains details for the user regarding how to configure the setting.

8.3 Intel MEU Configuration

Intel MEU uses XML configuration file that is used to configure the signing and

compression utilities as well as some user variables. The config file is not visible upon
installation, but needs to be generated by the user. The config file template,
meu_config.xml, can be generated by the tool with the following command:

C:\meu\meu.exe -gen meu_config

By default, the tool will look for meu_config.xml in the same folder as the meu.exe

executable, but this can be overridden using a command line option.

8.3.1 Signing Tool Configuration

The following XML block is used in the meu_config.xml to configure the signing utility:

<SigningConfig>

 <SigningTool value="OpenSSL"

value_list="Disabled,,OpenSSL,,MobileSigningUtil">

 <SigningToolPath value="$UserVar1/openssl/openssl.exe">

 <PrivateKeyPath value="$SourceDir/keys/dbg_priv_key.pem">

 <SigningToolXmlPath value="">

 <SigningToolExecPath value="">

</SigningConfig>

Intel® Manifest Extension Utility (MEU)

 Intel Confidential 55

 SigningTool - Select the tool to use for signing. Currently, Intel MEU only
supports OpenSSL.

 SigningToolPath - The path to the signing tool binary file.

 PrivateKeyPath - The path to the private key file (in PEM format) to use for
signing.

 SigningToolXmlPath Leave blank.

 SigningToolExecPath Configures the path to execute the signing tool from. If
left blank, the current working directory will be used. This can be useful if relative
paths are used in the Signing Tool XML file.

Intel MEU does not come with the OpenSSL command line utility, and it must be

installed separately. One source for OpenSSL binaries is Shining Light Productions,

the "Light" version is sufficient.

8.3.2 LZMA Compression Tool

TXE FW supports handling of compressed modules. This functionality is currently

available for the Integrated Sensor Hub Code Partition (ISH). The manifest tool must
be configured with the path to the compression utility, which is usually distributed

with the tool. If LZMA compression is not needed, this path can be left blank.

<CompressionConfig label="Compression Configuration">

 <LzmaToolPath value="$UserVar1/ftool/lzma.exe" label="LZMA

Tool Path">

</CompressionConfig>

8.3.3 User Path Variables

Intel MEU allows the use of User Path Variables to allow the XML to be more flexible.

These variables can be configured in the meu_config.xml or by using command line

options.

<PathVars label="Path Variables">

 <WorkingDir value="./" label="$WorkingDir" help_text="Path

for environment variable $WorkingDir">

 <SourceDir value="./" label="$SourceDir" help_text="Path for

environment variable $SourceDir">

 <DestDir value="./" label="$DestDir" help_text="Path for

environment variable $DestDir">

 <UserVar1 value="./" label="$UserVar1" help_text="Path for

environment variable $UserVar1">

 <UserVar2 value="./" label="$UserVar2" help_text="Path for

environment variable $UserVar2">

https://slproweb.com/products/Win32OpenSSL.html

Intel® Manifest Extension Utility (MEU)

56 Intel Confidential

 <UserVar3 value="./" label="$UserVar3" help_text="Path for

environment variable $UserVar3">

</PathVars>

These variables can be substituted in a configuration xml node's value and will be

replaced by the variable's value at build time. For example when configuring the
OpenSSL path, we can use $UserVar1:

<SigningToolPath value="$UserVar1\openssl.exe">

And, then if the tool is run with the -u1 switch:

C:\meu\meu.exe -f <input xml> -u1 "c:\openssl\bin"

Intel MEU will look for OpenSSL at the path "c:\openssl\bin\openssl.exe".

Although some of these variables are named (i.e. SourceDir), the tool will not actually
search in this path, for a given source/input file, unless "$SourceDir" is contained in

the corresponding xml configuration xml node's value.

8.4 Supported Binary Formats

This section describes the binary formats supported by Intel MEU.

8.4.1 Binary Types

Intel MEU generates template XML configuration files for each binary format. To get a

complete list of templates Intel MEU can generate, use the following command:

C:\meu\meu.exe -binlist

To generate an XML template use the following command:

C:\meu\meu.exe -gen <Binary Type> -o <output.xml>

This is the table of supported binaries for OEM usage:

Binary Type Usage

CodePartition ISH

CodePartitionMeta iUnit, Audio (aDSP)

Bios IAFW (BIOS) Image

OEMKeyManifest OEM Key Manifest Extension

DnxRecoveryImage DnX IFWI Image

OEMUnlockToken OEM Unlock Token

http://fmsmeapps01/bxtmeu/_code_partition.html
http://fmsmeapps01/bxtmeu/_code_partition_meta.html
http://fmsmeapps01/bxtmeu/_iunit_page.html
http://fmsmeapps01/bxtmeu/_audio_page.html

Intel® Manifest Extension Utility (MEU)

 Intel Confidential 57

8.4.2 Example: OEM Key Manifest Creation

To Generate the OEM Key Manifest XML template, run the following command:

 C:\meu>meu -gen OEMKeyManifest -o OEMKeyManifest.xml

===

Intel(R) Manifest Extension Utility. Version: 3.0.0.1029

Copyright (c) 2013 - 2015, Intel Corporation. All rights

reserved.

8/12/2015 - 3:58:35 pm

===

Command Line: meu -gen OEMKeyManifest -o OEMKeyManifest.xml

Saving XML ...

XML file written to OEMKeyManifest.xml

To build the OEM Key manifest, edit the XML configuration file generated in the

previous step to ensure all of its fields include correct data

 C:\meu\meu.exe -f M:/fw/build/meu/OEMKeyManifest.xml \

 -o M:/fw/bin /OEMKeyManifest.bin \

 -s M:/fw/build \

 -mnver 3.0.0.7005 \

 -u1 M:/fw/tools

8.5 Creating a Public Key Hash:

Intel MEU supports creation of a public key hash, which is a binary file containing the

hash of the public key’s modulus and exponent in little endian format, in one of 3
different ways:

1. Extraction from an already signed binary:

meu.exe -keyhash <output hashfile> -f <input.bin>

2. Extraction from a public or private key in PEM format

meu.exe -keyhash <output hashfile> -key <inputkey.pem>

Intel® Manifest Extension Utility (MEU)

58 Intel Confidential

3. Creation when building or signing a binary

meu.exe -keyhash <output hashfile> -f <input.xml> -o <output.bin>

The public key hash is a readable string, and can be copied and pasted from the text

file as needed.

8.5.1 Example: Key Hash Generation

To generate a public key hash from a signed binary:

meu.exe -keyhash temp/hash -f iunp.bin

===

Intel(R) Manifest Extension Utility. Version: 3.0.0.1048

Copyright (c) 2013 - 2015, Intel Corporation. All rights reserved.

10/29/2015 - 10:10:24 am

===

Command Line: meu -keyhash temp/hash -f iunp.bin

Log file written to meu.log

Loading XML file: C:/Users/meu_config.xml

Public Key Hash Value:

 14 05 A8 A4 EB 1C 8A C2 51 19 7D 85 96 14 09 FF 15 FD CD 23 D3 25 CC DD

88 D2 17 5C DE 3B 27 36

Public Key Hash Saved to:

 temp\hash.bin

 temp\hash.txt

Program terminated.

8.6 Decomposing a Binary

Intel® MEU is able to decompose a manifested and signed binary, to return it to the

original state it was in before Intel MEU added a manifest and/or signature, together
with an xml detailing the decomposition. This xml can later be used as input to Intel®

Intel® Manifest Extension Utility (MEU)

 Intel Confidential 59

MEU to recreate the full binary with manifest and signature. The –decomp command
also requires the binary type as its first parameter. So, for example, to decompose a

BIOS binary, you can call:

meu -decomp BIOS -f <input.bin> –save <decomp.xml>

8.7 Resigning a Binary

Intel® MEU is able to resign a binary that has already been signed. This is very useful

when changing the signing keys – the relevant binary files just need to be resigned.

meu.exe –resign -f <input.bin> –o <output.bin> -key <privatekey.pem>

It is only necessary to override the private key for signing (as in the example) if the

key is different to that defined in the default Intel® MEU configuration xml.

Some binaries – such as full IFWI images, include multiple manifests. When calling the

–resign option on such binaries, you need to include the index of the manifest to be

resigned, or ‘all’ if all are to be resigned (using the new key). If the index, or ‘all’ is
not included, Intel® MEU will show a full list of the manifests included in the binary:

More than one manifest was found in this file. Please provide a comma-

separated list of the manifest indices you want to resign. (ex. -resign

"0,3,5") or specify "all" (ex. -resign all)

The following manifests were detected:

 Index | Offset | Size | Name (if available)

 0 | 0x000002058 | 0x000000378 | SMIP.man

 1 | 0x000006058 | 0x000000378 | RBEP.man

 2 | 0x00000E088 | 0x0000003E0 | PMCP.man

 3 | 0x00001C130 | 0x000000D6C | FTPR.man

 4 | 0x00006F000 | 0x0000002EC | rot.key

 5 | 0x000072CD0 | 0x0000003B8 | oem.key

 6 | 0x000077070 | 0x0000002EC | IBBP.man

 7 | 0x0000D1058 | 0x000000378 | ISHC.man

 8 | 0x0001116E8 | 0x0000011B0 | NFTP.man

 9 | 0x0005C2070 | 0x000000378 | IUNP.man

The Intel® MEU can then be called again, including the index desired. Following the

above example, if the SMIP is to be resigned, call:
meu.exe –resign 0 -f <input.bin> –o <output.bin> -key <privatekey.pem>

Intel® Manifest Extension Utility (MEU)

60 Intel Confidential

8.8 Exporting a Manifest

Intel® supports exporting the manifest(s) from a binary. This can be useful if a user

wishes to sign them using a different application (i.e. not OpenSSL), or send them to

a signing server to be signed.

Use the MEU –export function to export the manifest. The manifest is exported to a

directory.
meu -export -f <binary.bin> -o <directory_containing_manifests>

If the binary includes multiple manifests, you need to give the index of the desired

manifest, e.g.

meu -export 0 -f <binary.bin> -o <directory_containing_manifests>

If you do not supply an index, or include all with the –export flag, Intel® will output a

list of all the manifests, including their indices:

More than one manifest was found in this file. Please provide a comma-

separated list of the manifest indices you want to export. (ex. -export

"0,3,5") or specify "all" (ex. -export "all")

The following manifests were detected:

 Index | Offset | Size | Name (if available)

 0 | 0x000001130 | 0x000000D9C | FTPR.man

 1 | 0x000053000 | 0x000000330 | rot.key

 2 | 0x000094058 | 0x000000378 | RBEP.man

 3 | 0x0000A1748 | 0x000001280 | NFTP.man

 4 | 0x0001A2058 | 0x000000378 | DNXP.man

Error 26: Failed to export manifest(s). Missing manifest indices list.

8.9 Importing a Manifest

Use the MEU –import function to import the signed manifest back into the binary. The

signed manifest must be in a separate directory, which is passed as an input

parameter. If the binary supports multiple manifests (e.g. a full IFWI binary), and the
folder has multiple manifests, the command will be able to import them all back into
the binary.

meu.exe -import <directory_containing_manifests> -f <input_binary.bin>

-o <output_binary.bin>

Intel® Manifest Extension Utility (MEU)

 Intel Confidential 61

8.10 Command Line Options

Command Line Option Description

exp Display example usage of this tool.

h | ? Display help screen.

version | ver Display version of the tool.

verbose | v Log verbose messages.

binlist Displays a list of supported binary types

o Overrides the output file path.

f Specifies input file. XML, full image binary, or ME only binary.

gen Specifies the type of XML template to generate.

cfg Overrides the path to the tool config XML file.

decomp Specifies the binary type to use for decomposition.

save Overrides the output XML path

w Overrides the $WorkingDir environment variable.

s Overrides the $SourceDir environment variable.

d Overrides the $DestDir environment variable.

u1 Overrides the $UserVar1 environment variable.

u2 Overrides the $UserVar2 environment variable.

u3 Overrides the $UserVar3 environment variable.

mnver Overrides the version of the output binary.

mndebug Overrides the debug flag in the output binary’s manifest(s)

st Overrides SigningTool in the tool config XML file

stp Overrides SigningToolPath in the tool config XML file

key Overrides the signing key in the XML file.

noverify Skips verification of generated manifest signature

keyhash Exports the public key hash to a directory

resign Resigns manifest(s) in a binary

export Exports manifest(s) from a binary

import Imports manifest(s) into a binary

§ §

Widevine* KeyBox Provisioning Procedure

62 Intel Confidential

9 Widevine* KeyBox Provisioning

Procedure

1. Provision Widevine using IV (Initialization Vector) and encrypted KeyBox file (refer
to Chapter 8 - Error! Reference source not found., for files creation procedure)

 Run FPT –provkb <iv_and_keybox.bin>

2. Optional: Verify that the Widevine device has been properly provisioned

 Run: TXEInfo –feat “keybox”

3. After properly closing manufacturing (using FPT-closemnf), run TXEManuf EOL
Testing.
Edit TXEManuf.cfg file in EOL section

 Uncomment "SubTestName "Validate Keybox Provisioning"" test in order to

include WV Provisioning Test check

 Run TXEManuf –EOL

Widevine* KeyBox Provisioning Procedure

 Intel Confidential 63

Intel® TXE CVARs

64 Intel Confidential

Appendix A Intel® TXE CVARs

This appendix only covers fixed offset variables that are directly available to FPT and FPTW. A complete list of CVARs can be found in the Firmware
Variable Structures for Intel® Management Engine. All of the fixed offset variables have an ID and a name. The -CVAR option displays a list of the IDs

and their respective names. The variable name must be entered exactly as displayed below.

This table is for reference use only and will be updated later.

Table 20: CVARs Descriptions

Fixed Offset
Name

FPT
ID

Fixed
Offset

ID

Description Data
Length

(in
Bytes)

Expected Value

S
e
c
u

r
e

R
e
s
e
t

T
y
p

e

Non-Application Specific Fixed Offset Item Descriptions

OEMSkuRule 7 0x000A UINT32 (little endian) value. This controls what features are

permanently disabled by OEM.

Notes:

There are reserved bits that the must not be changed

for proper platform operation. The user should only

modify the bit(s) for the feature(s) they wish to

change. There is NO ability to change features one at

a time. This CVAR sets OEM Permanent Disable for

ALL features. In addition prior updating or changing

any of available settings it is highly recommended

that the user first retrieves the current OEM Sku Rule

and toggling only the desired bits, and then resave

them.

This will not enable functionality that is not capable of

working in the target hardware SKU. Please see the

respective Firmware Bring-up Guide for a list of what

features are capable with what firmware bundle and

Hardware SKU of Intel 9 Series Chipset.

4 Feature Capable: 1

Feature Permanently disabled: 0

Bit Description Notes

31 Near Field

Communication

1

30 Reserved

29:22 Reserved

21 TLS

20 DAL

19 Reserved

18 Reserved

17 Reserved

16 Reserved

15:13 Reserved

12 PAVP

11:6 Reserved

No Global

Intel® TXE CVARs

 Intel Confidential 65

Fixed Offset
Name

FPT
ID

Fixed
Offset

ID

Description Data
Length

(in
Bytes)

Expected Value

S
e
c
u

r
e

R
e
s
e
t

T
y
p

e

5 Reserved

4:3 Reserved

2 Security

Application

1 Reserved

0 Reserved

Feature Shipment

Time State

8 0x000B UINT32 (little endian) value. This controls what features are

enabled or disabled. This setting is only relevant for

features NOT permanently disabled by the OEM Permanent

Disable.

This will not enable functionality that is not capable of

working in the target hardware SKU. Please see the

respective Firmware Bring-up Guide for a list of what

features are capable with what firmware bundle and

Hardware SKU

Notes:

There are reserved bits that the must not be changed

for proper platform operation. The user should only

modify the bit(s) for the feature(s) they wish to

change. There is NO ability to change features one at

a time. This CVAR sets OEM Permanent Disable for

ALL features. In addition prior updating or changing

any of available settings it is highly recommended

that the user first retrieves the current Feature

Shipment Time State and toggling only the desired

bits, and then resave them.

4 Feature Enabled: 1

Feature Disabled: 0

Bit Description Notes

31:30 Reserved

29 Reserved

28:3 Reserved

2 Reserved

1:0 Reserved

No Global

OEM_TAG 34 0x000F A human readable 32-bit number to describe the

flash image represented by value

4 Readable 32 bit hex value identifying the

image. Can be empty (Null).

No TXE

Revenue Sharing Related CVAR Item Descriptions

ODM_ID 0x5003 CVAR used for setting the ODM ID Used by Intel ® Services

Note: This value can only be programmed into FW

once.

4 32-bit value

Value 0x00000000 < n < 0xFFFFFFFF
Yes

TXE

Intel® TXE CVARs

66 Intel Confidential

Fixed Offset
Name

FPT
ID

Fixed
Offset

ID

Description Data
Length

(in
Bytes)

Expected Value

S
e
c
u

r
e

R
e
s
e
t

T
y
p

e

SystemIntegratorID 0x5004 Used for setting the System Integrator ID used by Intel ®

Services

Note: This value can only be programmed into FW

once.

4 32-bit value

Value 0x00000000 < n < 0xFFFFFFFF
Yes

TXE

ReservedID 0x5005 Used for setting the "Reserved" ID used by Intel ® Services

Note: This value can only be programmed into FW

once.

4 32-bit value

Value 0x00000000 < n < 0xFFFFFFFF
Yes

TXE

Field Programmable Fuses

PTT Enable 0x7001 Enables / Disables the fTPM / PTT FPFs 1 0 = Disabled

1 = Enabled

Note: Setting the value to ‘0’ will

permanently disable Intel® PTT in the

chipset.

No TXE

FPT CVAR Retrieve command:

fpt.exe –r <name> | all [-f <file>] [options]

Required Parameters

<name> Name of CVAR OR All retrieves all the CVARs

Manufacturing Configurable CVARs

Named Variables (CVARs)

OEMSkuRule

FeatureShipState

OEM_TAG

ODM ID used by Intel (R) Services

System Integrator ID used by Intel (R) Services

Reserved ID used by Intel (R) Services

Intel® TXE CVARs

 Intel Confidential 67

Manufacturing Configurable CVARs

Named Variables (CVARs)

Flash Protection Override Policy Hard

Flash Protection Override Policy Soft

§ §

Appendix B Tool Detail Error

Codes

B.1 Line Tool Error Codes

Note that FIT and MEU have different error codes, as mentioned in section 2.7.

Code Message Response

0

1

2 Failure. Unexpected error occurred Contact Intel

3 Internal Error. Unexpected error occurred Contact Intel

4 Unsupported OS

5 Memory allocation error occurred

Make sure there is

enough memory in

the system

6
Error accessing the function "GetSystemFirmwareTable" from

"kernel32.dll"

7
The function "GetSystemFirmwareTable" failed with Windows

Error Code: %d

8 Error accessing the "kernel32.dll"

9
Error log is not created because tool is likely running on a

read-only media

10 Error occurred while reading the file "%s"

11 Error getting current working directory path:

12 Error getting current working directory permissions:

13 An unknown error occurred while opening the file

14 An unknown error occured while working with the file "%s".

15 Error occurred while writing to the file "%s"

16 NVAR not found

21 General error

22 Cannot locate TXE device

23 Memory access failure

24 Write register failure

25 OS failed to allocate memory

26 Circular buffer overflow

27 Not enough memory in circular buffer

28
Communication error between application and Intel(R) TXE

module

29 Unsupported HECI bus message protocol version

Widevine* KeyBox Provisioning Procedure

 Intel Confidential 69

Code Message Response

31 AMT device unavailable

32 Unexpected result in command response Contact Intel

33 Unsupported message type

34 Cannot find host client

35 Cannot find TXE client

36 Failure occurred during TXE disconnect

37 Client already connected

38 No free connection available

39 Illegal parameter

40 Flow control error

41 No message

42 Requesting Intel(R) TXEI recieve buffer size is too large

43 Application or driver internal error

45 Command is not supported

46 Invalid command line option(s)

47 The following Parameter is not a valid option: %s

48 Internal Error (PCH is not supported)

49 Internal Error (Safe function wrapper error: Invalid size)

50
Internal Error (Safe function wrapper error: compose string

from list)

51 Internal Error (Safe function wrapper error: compose string)

52 Internal Error (Safe function wrapper error: memncpy)

53 Internal Error (Safe function wrapper error: strncpy)

54 Internal Error (Safe function wrapper error: strncat)

55 Internal Error (Safe function wrapper error: strtok)

57 Failed getting variable "%s" value

58
You cannot do a compare on a complex structure such as

 "%s".

59 Unable to find matching LOCL

60 Intel(R) Gbe was not found

61 Interal Error (Plat info general failure)

62 Could not access PCI device

63 Operation is not supported

64 Internal Error (OS interace: Illegal Param)

65 Unexpected Failure.

66 Unable to load library

67 Unable to change permission

68 Unable to perform request due to permission failure

70 Unable to perform CreateFile

71 The FPF compare failed

72 Retrieving the FPF Data failed

Widevine* KeyBox Provisioning Procedure

70 Intel Confidential

Code Message Response

73
The FPF requested, "%s", is not valid

 for this operation. Valid FPFs include:

74 This FPF cannot be retrieved until it has been committed

75 The FPF is not currently supported by the TXE

76
Communication error between application and Intel(R) TXE

module (AMT client)

77
Communication error between application and Intel(R) AMT

module (PTHI client)

78
Communication error between application and Intel(R) TXE

module (ICLS client)

79 Fail to read FW Status Register value

80 Fail to create verbose log file %s

81 Internal error (Could not determine FW features information)

82 Unknown or unsupported hardware platform

83
Communication error between application and Intel(R) TXE

module (HCI client)

84
Communication error between application and Intel(R) TXE

module (FPF client)

85
Communication error between application and Intel(R) TXE

module (NFC client)

86
Communication error between application and Intel(R) TXE

module (FWU client)

88
Fail to load driver (PCI access for Windows).

Tool needs to run with an administrator priviledge account.

89 %s feature was not found.

90 %s feature was not available.

91 %s actual value is - %s.

92
Error reporting revenue share information - Invalid index

used

93
Error reporting revenue share information - Index already in

use

94 This slot is unused

95
%s feature was not available because TXE is not in

manufacturing mode.

96 Failed to locate DATA manifest marker

97 Failed to locate PID module entry

98 End of file encountered when reading first record

99 Invalid PID Section Data Marker

100
This PID cannot be used since the PID matches the known

PID for Pre-Production PCHs

101 Non-Intel chipset found in first record

102 No PID list marker found

105 Internal Error (Failed to initialize platinfo)

106 Error occurred while communicating with SPI device Check SPI device

107 Failed to create dependency list for features

108
Fail to load driver (PCI access for Windows).

Tool needs to run with an administrator priviledge account.

109 Unsupported TXE Firmware Version

Widevine* KeyBox Provisioning Procedure

 Intel Confidential 71

Code Message Response

110 Failed to retrieve feature

111 Received Status from TXE: FPF File Invalid

112 Internal Error (Failed to check eligility)

113 Internal Error (Unexpected error occured)

114 Failed to retrieve Intel(R) FIT version

115 Unknown or unsupported hardware platform

116 Unsupported TXE Firmware Version %i.%i.%i.%i %s

117 TXEManuf Operation Failed

119
Fail to load driver (PCI access for Windows).

Tool needs to run with an administrator priviledge account.

120
Communication error between application and Intel(R) TXE

module (BIST client)

121
Communication error between application and Intel(R) TXE

module (AMT client)

122 Fail to read FW Status Register value

124 Fail to retrieve error list

125 Internal error (Could not determine FW features information)

126 Access to SPI Flash device(s) failed

127 Failed to create dependency list for features

128 Intel(R) test failed to start, error 0x%X returned

129 Intel(R) test timeout (exceeded 30 seconds)

130 Intel(R) TXE test is currently running, try again later

131 TXEManuf End-Of-Line Test config file generation failed

132
M3 results are not available from SPI. Please run -test option

to perform the BIST test

133 Could not read M3 results from SPI

136 Internal Error

137 Internal error - Invalid Parameters

138 SMBus hardware is not ready

139 Internal error - SMBus Read Byte PEC failure

140 SMBus encountered time-out

141 Internal Error. FW returns status %d

142 Power source is not AC

143 Failed to retrieve power source

144 Internal error - Failed to enum PP

145 Internal error - Failed to match

146 Internal error - Out of memory

147 Internal error - Unabled to get current PP

148 Failed to retrieve test result from SPI

149 Failed to retrieve power package setting

150 Failed to retrieve power rule from SPI

151 WLAN power well setting is set incorrectly

Widevine* KeyBox Provisioning Procedure

72 Intel Confidential

Code Message Response

152 Failed to retrieve test result from SPI

153 Internal error - Failed to retrieve Platform Attribute

154 Failed to retrieve PROC_MISSING NVAR setting

155 PROC_MISSING NVAR setting is set incorrectly

156 Failed to retrieve test result from SPI

157 Failed to retrieve power package setting

158 Failed to retrieve M3 Power Rails Availablitiy setting

159 M3 Power Rails Availablitiy setting is set incorrectly

160 Failed to retrieve password from SPI

161 Internal error - Password length is incorrect

162 Internal error - Modified local password

163 Internal error - Invalid password

164 Firmware is in recovery mode

165 Boot Guard Self Test Failed

166 Intel integrated LAN setting is set incorrectly

167
Intel LAN Connected Device (PHY) physical connectivity error

with TXE

168 Internal error - Illegal data length

169 Internal error - Illegal data value

170 EHBC State Test Failed - Error while reading data from flash

171
EHBC State Test Failed - Contradiction with current Privacy

Level

172
Current WLAN does not match micro-code, please update

WLAN micro-code in FW

173 Communication with WLAN device failed

174
Length of OEM Customizable Certificate Friendly Name

setting is set incorrectly

175
OEM Customizable Certificate Stream setting is set

incorrectly

176
OEM Customizable Certificate Hash Algorithm setting is set

incorrectly

177
Length of OEM Customizable Certificate Stream is set

incorrectly

178 Internal error - Unable to compress

179 The compressed data is incorrect

180
USBr EHCI 1 Enabled and/or USBr EHCI 2 Enabled setting is

set incorrectly

181 KVM device is already in use by other components

182 Internal error

183 Failed to retrieve power source

184 Power source is not AC

185 I2C address or alert pin is not configured correctly

186 Internal error - alert pin

187
Cannot communicate with NFC module. Check physical

connection of I2C, I2C address configuration and reset pin

Widevine* KeyBox Provisioning Procedure

 Intel Confidential 73

Code Message Response

188 Internal error - self-test

189
I2C communications failed. Check physical connection and

I2C address

190
Alert pin failed. Check physical connection and alert pin

configuration

191 NFC RF - error returned from module

192
NFC RF - communication interference or bad response from

module

193 NFC RF - timed out

194 NFC RF - module is in the wrong state

195 NFC RF - antenna not present or blocked

196 NFC RF - internal error

197 NFC reset pin failure. Check physical reset pin connection.

198 LAN power well setting is set incorrectly

199 WLAN power well setting is set incorrectly

200 M3 Power Rail Supported is set incorrectly

201 Intel(R) TXE firmware version mismatch, actual value is - %s

202 Intel(R) Gbe version mismatch, actual value is - %s

203 BIOS version mismatch, actual value is - %s

204 System UUID mismatch, actual value is - %s

205 System UUID mismatch, feature is not supported

206 System UUID actual value is all 0x00

207 System UUID actual value is all 0xFF

208
Intel(R) Wired LAN MAC address mismatch, actual value is -

%s

209
Intel(R) Wireless LAN MAC address mismatch, actual value is

- %s

210 Security Descriptor Override Strap (SDO) is enabled

211 End-Of-Post message is not sent

212 Unable to determine Intel(R) TXE Manufacturing Mode status

213 Intel(R) TXE is still in Manufacturing Mode

214 CF9GR is not locked

215
Region access permissions don't match Intel recommended

values

216 BIOS has granted Intel(R) TXE access to its region

217 SPI flash descriptor region is not locked

218 Intel(R) TXE has read or write access to BIOS region

219 SPI flash Intel(R) TXE region is not locked

229 Wireless LAN micro-code mismatch, actual value is - %s

230 %s have not been set

231 %s mismatch, actual value is - %s

232 Variable %s mismatch, actual value is - %s

233 Memory allocation failed for checking variable

Widevine* KeyBox Provisioning Procedure

74 Intel Confidential

Code Message Response

234 Invalid test name -

235 Internal error

236 Cannot run the command since Intel(R) AMT is not available

237 No valid OEM ICC data programmed

238 MFS is corrupted

239
Using wrong PCH SKU Emulation via Intel (R) FIT vs whats

the actual HW Type

240 FPFs are not committed

241 FPFs and TXE Config mismatch

242 Internal error

243
Cannot perform hibernation. Please manually reboot the

system

244 TXEManuf Test Failed

245 No Intel(R) TXE test result to retrieve

246 TXEManuf Operation Passed (with warnings)

247 Test is enabled by the user but is unknown by the platform -

248 Some Intel(R) recommended checks have been skipped:

251 Attempting to add sibling to XML root node

252 File size is zero

253 XML parsing failed

254 XML parsing encountered data overflow

255 Invalid XML error code conversion

256 XML parser - out of memory error

296 Failed to retrieve list of BIST tests to run from FW

297 Unexpected failure when retrieving BIST results

298
Test is enabled by the user but is not supported by the

current sku -

299

300 Retrieving the EOL Config list of tests failed.

301 Retrieving the EOL Var list of tests failed.

302 No name attribute specified for test:

303 Failed to parse configuration file provided.

304 No output file path specified to write configuration file.

305 No data to write to configuration file.

306 Invalid ErrAction specified:

307 Invalid node name.

308
The 2 SPI flash devices do not have compatible command

sets.

309
No SPI flash device could be identified. Please verify if

Fparts.txt has support

Verify that the

device is listed in

Fparts.txt.

310 "%s" file not found. Check file location

311 Access was denied opening the file "%s" Check file location

Widevine* KeyBox Provisioning Procedure

 Intel Confidential 75

Code Message Response

312 An unknown error occurred while opening the file "%s"
Verify the file is not

corrupt

313
Failed to allocate memory for the flash part definition file

"%s"

Check system

memory

Verify the file is not

corrupt

314 Failed to read the entire file "%s" into memory.

Check system

memory

Verify the file is not

corrupt

315 Parsing of file "%s" failed.

Check system

memory

Verify the file is not

corrupt

316

Protected Range Registers are currently set by BIOS,

preventing flash access.

Please contact the target system BIOS vendor for an option

to disable Protected Range Registers.

Assert Flash

Descriptor Override

Strap (GPIO33) to

Low, Power Cycle,

and Retry.

317
Hardware sequencing failed. Make sure that you have access

to target flash area!

If Protected Range

Registers (memory

location: SPIBAR +

74h -> 8Fh) are still

set, contact the

target BIOS vendor.

318

The host CPU does not have read access to the target flash

area. To enable read access for this operation you must

modify the descriptor settings to give host access to this

region.

Check descriptor

region access

settings

319
An attempt was made to read beyond the end of flash

memory
Check address

320
Software sequencing failed. Make sure that you have access

to target flash area!

Software sequencing

failed

321 Invalid Block Erase Size value in "%s".

322 Invalid Write Granularity value in "%s".

323
Invalid Enable Write Status Register Command value in

"%s".

325 Internal Error.

326
The supplied zero-based index of the SPI Device is out of

range.

328 Invalid descriptor region.
Check descriptor

region

329 Region does not exist.
Check region to be

programmed

330
An attempt was made to write beyond the end of flash

memory
Check address

331
An attempt was made to erase beyond the end of flash

memory
Check address

332 General Erase failure.

Attempt the

command again. If it

fails again, contact

Intel.

333
The address 0x%08X of the block to erase is not aligned

correctly.
Check address

Widevine* KeyBox Provisioning Procedure

76 Intel Confidential

Code Message Response

334

The host CPU does not have erase access to the target flash

area. To enable erase access for this operation you must

modify the descriptor settings to give host access to this

region.

Check descriptor

region access

settings

335 Error occurred while communicating with SPI device. Check SPI device

337 Hardware timeout occurred in SPI device.

338
There are no supported SPI flash devices installed. Please

check connectivity

Verify Fparts.txt has

correct values.

Check SPI Device

339 Unrecognized value in the HSFSTS register.

340 AEL is not equal to zero.

341 FCERR is not equal to zero.

344 Checking variable "%s" failed.

347 Invalid Manufacturing Line Configurable variable name "%s".

349 "%s" file already exists.

350 "%s" file does not exist.

353
End Of Manufacturing Operation failure - Verification failure

on Descriptor Lock settings.

354 Unable to get master base address from the descriptor.

355 Password does not match the criteria.

356
Invalid length of Manufacturing Line Configurable value.

Check configuration file for correct length.

357
Invalid hexadecimal value entered for the Manufacturing Line

Configurable.

358 Invalid hash certificate file "%s".

359 An unknown error occurred while opening the file "%s".

360
End Of Manufacturing Operation failure - Verification failure

on TXE Manufacturing Mode Done settings.

361 The Global Lock Bit has already been set.

362 Not able to open the file "%s".

365
Invalid parameter value specified by user. Use -? option to

see help.

366
Fail to load driver (PCI access for Windows).

Tool needs to run with an administrator priviledge account.

367
[%s] cannot be run on the current platform.

Please contact your vendor.

368 Failed to disable write protection for the BIOS space.

369 TXE disabled

370 Failed to get information about the installed flash devices!

371 An error occurred reading the flash descriptor signature.

372 Flash descriptor does not have correct signature.

375 "%s" is not a valid file name.

376 Image file "%s" not found.

377 Access was denied opening the file "%s".

378 Failed to read the entire file into memory. File: %s

Check system

memory

Verify the file is not

corrupt

Widevine* KeyBox Provisioning Procedure

 Intel Confidential 77

Code Message Response

379 The address is outside the boundaries of the flash area.

380 Unable to write data to flash. Address 0x%x.

381 Data verify mismatch found.

382 Access was denied creating the file "%s".

383 An unknown error occurred while creating %s.

384 Failed to write the entire flash contents to file.

385 General Read failure.

386 An error occurred reading the flash mapping data.

387
System booted in Non-Descriptor mode, but the flash

appears to contain a valid signature.

388 An error occurred reading the flash components data.

389 An error occurred reading the flash region base/limit data.

390 An error occurred reading the flash master access data.

391 Flash is not blank.

392 The Close Manufacturing process failed.

393 Setting Global Reset Failed

394 TXE disable not needed

395 TXE already disabled

396 The request to disable the TXE failed.

397 There was a communications error between FPT and the TXE.

398
There is a problem with the GbE binary which prevents

saving the data.

400 Param file "%s" is already opened.

401 Requesting ME FW Reset failure.

402 Fail to load driver (PCI access for Windows)

403 No FPF Name provided.

404 No value to compare against.

405 A required parameter is missing.

437 Invalid keybox API version in provisioning response.

438 Invalid keybox command id in provisioning response.

439 Invalid keybox buffer length in provisioning response.

440 CEK is invalid.

441 CEK is not available.

442 Cannot provision after EOM.

443 Unknown error for provisioning status.

444 Bad CRC.

445 Bad Magic.

446 Invalid keybox status in provisioning response.

447 Invalid keybox API version in provisioning response.

448 Invalid keybox command id in provisioning response.

449 Invalid keybox buffer length in provisioning response.

Widevine* KeyBox Provisioning Procedure

78 Intel Confidential

Code Message Response

450 Keybox is not provisioned.

451

The host CPU does not have write access to the target flash

area. To enable write access for this operation you must

modify the descriptor settings to give host access to this

region.

Check descriptor

region access

settings

453 User elected to cancel the operation.

454
Confirmation is not received from the user to perform

operation.

455
User response was invalid. Please select from the correct

responses.

456 Open Process Token error %d

457 Adjust Token Privileges error %d

458 Initiate System Shutdown error %d

459 Graceful Exit of Windows has failed.

460 Error determining possible system states.

462 Cannot locate MEI driver

463
A test returned from FW does not match known test by the

tool: App(%d) Comp(%d) Test(%d)

464
FW update pin failed. Check physical FW update pin

connection.

465 The test was not run

467 MCA Internal Error

468 Folder does not exist

469 Folder is not empty

470 Blob Internal Error

471 Write Error

472 Read Error

473 Remove Error

474 Invalid "State" found for test -

475 ISH Internal Error

476 IUP Not Found

477 Attempt to communicate to ISH library failed

478 ISH error. Library status: 0x%08X

479
ISH error. Unexpected Failure. Please make sure to use

correct DLL version.

480 ISH error. Invalid level selected.

481 ISH Test failed

482 Error retrieving ISH configuration

483
Communication error between application and Intel(R) TXE

module (Intel(R) Precise Technology client).

484 Cannot locate HID device.

485 Incorrect Report ID received.

486 MCTP SMBUS test failed

487

488 Invalid config file. "State" was not found for test -

Widevine* KeyBox Provisioning Procedure

 Intel Confidential 79

Code Message Response

489 Invalid config file. "RequiredValue" was not found for test -

490 Invalid config file. "ErrAction" was not found for test -

492 Unable to validate address range

493 Memory window not set or device is not armed for operation

494

Sensor could not be found. Either no sensor is connected, the

sensor has not yet initialized, or the system is improperly

configured.

495 Not enough memory/storage for requested operation

496 Unexpected error occurred

497

Used in TOUCH_SENSOR_HID_READY_FOR_DATA_RSP to

indicate sensor has been disabled or reset and must be

reinitialized.

498

Used to indicate compatibility revision check between sensor

and ME failed, or protocol ver between TXE/HID/Kernels

failed.

499 Indicates sensor went through an unexpected reset

500 Requested sensor reset failed to complete

501 Operation timed out

502 Test mode pattern did not match expected values

503
Indicates sensor reported fatal error during reset sequence.

Further progress is not possible.

504
Indicates sensor reported non-fatal error during reset

sequence. HID/BIOS logs error and attempts to continue.

505
Indicates sensor reported invalid capabilities, such as not

supporting required minimum frequency or I/O mode.

506
Indicates that command cannot be complete until ongoing

Quiesce I/O flow has completed.

507 Touch - Vendor ID mismatch, actual value is - %s

508 Cannot access the NVAR file.

509 Cannot find the NVAR file; the system maybe in EOM.

511 Cannot read the NVAR file.

513 Cannot access the NVAR file attributes.

514 Cannot access the CVAR file; No CVAR files to commit.

515 Cannot modify the NVAR file.

516
Cannot access the CVAR file; file is not allowed to be

changed after EOM.

517 Used an invalid input parameter to access the NVAR file.

528
No Permission to access the NVAR file; the system maybe in

EOM.

529 NVAR access in the system caused a general error.

530 Some platform eligible tests have been skipped:

531 HDCP file invalid.

535 Failure. Unexpected error occurred.

536 Can not provision after EOM.

537 Certificate verification failed.

538 HDCP Rx is not provisioned.

Widevine* KeyBox Provisioning Procedure

80 Intel Confidential

Code Message Response

540
Invalid string value entered for the Manufacturing Line

Configurable.

542 Fail to read FW Status Register value

543 Detected TXE in recovery mode.

546 FW returned status: Erase token failure.

548 Detected invalid data size.

549 Detected invalid hex value.

550 Integrated Sensor Solution Test Returned Warning.

551 Invalid data

552 Invalid size

553 Failed to read DnXP Partition

554 does not contain region

555 IFWI Prepare to Update failed

558 Command size does not match expected value

559 EOM prevents IFWI Prepare to Update from completing

560 Command not supported

561 System Audit Log Error

562 CSE is in some special security sensitive state

563
Undefined Error not expected, BIOS may continue with

update

564 Variable "%s" is not available on this platform.

565 An error occurred while opening the file "%s".

566
Unexpected size found in the file "%s". Expected: 0x%X.

Received: 0x%X.

567 Keybox is not provisioned.

568 Unexpected keybox failure.

569
Unable to execute command in this Firmware State. Please

reboot.

570
Unable to enable the feature "Persistent PRTC Backup Power"

through FPT by setting the CVAR to 00.

571

File "%s" contains GPIO pin assignments that are not

multiples

of the GPIO pin data structure.

572 DnX Enumeration Timeout mismatch, actual value is - %s.

573 Mismatch on FPF file %s - UEP: %s, FPF HW: %s.

574 Valid bit FPF is not set on file %s.

575 FPFs are not committed to HW.

576 RPMB data migration done FPF is not set.

577 RPMB is not bound.

578 Failed to read provisioning status.

579 Failed to read FPF HW.

580 SOC Config Lock is not set.

581 Lock bit FPF is not set on file %s.

582 Failed to read FPF in UEP.

Widevine* KeyBox Provisioning Procedure

 Intel Confidential 81

Code Message Response

583 Failed to retrieve Intel (R) Internal Build Version

584 Attestation KeyBox NVAR is empty

585 Attkb file size invalid.

B.2 Firmware Update Errors
Error
Code

Error Message

0 Success

8193 Intel® TXE Interface : Cannot locate Intel® TXE device driver

8704 Firmware update operation not initiated due to a SKU mismatch

8705 Firmware update not initiated due to version mismatch

8706 Firmware update not initiated due to integrity failure or invalid FW image

8707 Firmware update failed due to an internal error

8708 Firmware Update operation not initiated because a firmware update is already in

progress

8710 Firmware update tool failed due to insufficient memory

8713 Firmware update not initiated due to an invalid FW image header

8714 Firmware update not initiated due to file open or read failure

8716 Invalid usage

8718 Update operation timed-out; cannot determine if the operation succeeded

8719 Firmware update cannot be initiated because Local Firmware update is disabled

8722 Intel® TXE Interface : Unsupported message type

8723 No Firmware update is happening

8724 Platform did not respond to update request.

8725 Failed to receive last update status from the firmware

8727 Firmware update tool failed to get the firmware parameters

8728 This version of the Intel l® FW Update Tool is not compatible with the current

platform.

8741 FW Update Failed.

8743 Unknown or unsupported Platform.

8744 OEM ID verification failed.

8745 Firmware update cannot be initiated because the OEM ID provided is incorrect

Widevine* KeyBox Provisioning Procedure

82 Intel Confidential

Error
Code

Error Message

8746 Firmware update not initiated due to invalid image length

8747 Firmware update not initiated due to an unavailable global buffer

8748 Firmware update not initiated due to invalid firmware parameters

8754 Encountered error writing to file.

8757 Display FW Version failed.

8758 The image provided is not supported by the platform.

8759 Internal Error.

8760 Update downgrade vetoed.

8761 Firmware write file failure.

8762 Firmware read file failure.

8763 Firmware delete file failure.

8764 Partition layout NOT compatible.

8765 Downgrade NOT allowed, data mismatched.

8766 Password did not match.

8768 Password Not provided when required.

8769 Polling for FW Update Failed.

8772 Invalid usage, -allowsv switch required to update the same version firmware

8778 Unable to read FW version from file. Please verify the update image used.

8787 Password exceeded maximum number of retries.

B.3 MEU Errors

Error
Code

Error

1 Failed to initialize tool

2 Failed to process input XML

3 Invalid command line options

4 Failed to build

5 Failed to save XML

6 File not found

7 Unknown root node found in XML

8 Invalid XML template option specified

9 Invalid Manifest Version specified on CLI

10 Unable to load tool config xml

11 Unsupported signing tool specified

Widevine* KeyBox Provisioning Procedure

 Intel Confidential 83

Error
Code

Error

12 Invalid signing tool configuration

13 Error setting the log file

14 Invalid decomp binary type specified

15 Invalid input file type

16 File is not a valid XML file

17 Invalid manifest index value

18 Error finding manifests in file

19 Failed to write file

20 Path provided is not a valid directory

21 Unable to find files

22 Unable to read file

23 Failed to import manifest(s)

24 Failed to resign manifest(s)

25 Failed to generate public key hash

26 Failed to export manifest(s)

27 Failed to decompose

§ §

Widevine* KeyBox Provisioning Procedure

84 Intel Confidential

Appendix C Tool Option

Dependency on BIOS/Intel®

TXE Status

Tools' Options Intel® TXE End-of-
Manufacturing CVAR

End of post

Set Not Set Yes No

FPT -Greset Not related Not related Not related N/A Not related

FPT –R Depends on End

of post status

Work Depends on Intel® TXE

manufacturing mode done bit status

Work

Intel® TXEINFO –

EOL config

Depends on End

of post status

Work Depends on Intel® TXE

manufacturing mode done bit status

Work

§ §

§ §

: Using Local Android* Intel® TXE System Tools

 Intel Confidential 85

Appendix D : Using Local

Android* Intel® TXE System

Tools

D.1 Using Android* System Tools

In order to use Intel® TXE System tools locally on SUT, you must push the tools using

ADB (Android Debug Bridge) to a directory that can be accessed using Terminal

Emulator OR using ABD itself.

D.2 Setup & Install ADB and Fastboot

Obtain ADB and Fastboot tool (comes as part of the Phone Flash Tool installation,

which is part of the Intel TXE FW Kit). There are Linux* and Windows versions of the
tool. Usage of this tool will be the same with respect to Intel TXE System tools.

D.3 Using Fastboot

To use Fastboot:

1. Connect a MicroUSB OTG cable between the platform USB OTG port and the host
System

2. From the host system, navigate to the Fastboot path, and open CMD/Shell

3. Run Fastboot –devices

 The output should be the device name on the devices list

4. For more information about Fastboot commands run: Fastboot -?

D.4 How to Push & Use the Intel® TXE System Tools

1. Connecting SUT to console can be done in two ways:

 Connect a MicroUSB OTG cable between the platform USB OTG port and the
host system

 Or using network connection:

1. Place both SUT & Console on same IP network

2. Use “ADB Connect <IP_Address_Of_SUT>”

2. Push the Intel TXE FW tools & their components, example below:

 \platform-tools>adb.exe push FPT /data/local

1862 KB/s (357043 bytes in 0.187s)

 \platform-tools>adb.exe push TXEInfo /data/local

1986 KB/s (222110 bytes in 0.109s)

: Using Local Android* Intel® TXE System Tools

86 Intel Confidential

 \platform-tools>adb.exe push TXEManuf /data/local

1914 KB/s (305893 bytes in 0.156s)

 \platform-tools>adb.exe push TXEManuf.cfg /data/local

377 KB/s (6023 bytes in 0.015s)

 \platform-tools>adb.exe push fparts.txt /data/local

7 KB/s (8057 bytes in 1.000s)

 \platform-tools>adb.exe push vsccommn.bin /data/local

133 KB/s (2132 bytes in 0.015s)

 \platform-tools>adb.exe push FpfConfigFile.txt /data/local

26 KB/s (431 bytes in 0.015s)

3. Run the Intel® TXE System tools using ADB or local Terminal Emulator

 Using ABD Example:

. \platform-tools>adb.exe shell

. root@android:/ # su

. 127|root@android:/ # cd data/local

. root@android:/data/local # chmod 777 FPT TXEInfo TXEManuf

. Verify execution rights have been given via “ls -l”

. While in “data/local” directory run: “./TXEInfo” / “./FPT”
“./TXEManuf”

4. Running local Terminal Emulator or Serial connection will be the same usage of
the Intel® TXE System tools. For Serial connection:

 Connect microUSB to Console COM port.

 Using Terminal client (e.g. PuTTY) configure connection to be serial with
speed of 115200.

 When connection is successful, change to Android directory where tools have
been pushed (i.e. /data/local per above example).

: Google* Widevine for Intel® TXE

 Intel Confidential 87

Appendix E : Google* Widevine

for Intel® TXE

E.1 Creating Widevine* CEK (Customer
Encryption Key)

The CEK is responsible for encrypting Widevine Keybox in Android devices and not

accessible by the host. The CEK is a global key used among the same models of

devices for a single Customer.

Note: The below key files are for demonstration purposes only and are not actual keys.

E.1.1 FITC CEK File Creation Procedure

E.1.1.1 Cleartext CEK

1. Generate a 16-byte Hex random number (unique per OEM) which is called CEK.

2. Combine 240 bytes of 0xFF (upper) with 16-byte CEK (lower) into 256 bytes
FITC_CEK.bin

3. Insert FITC_CEK.bin into flash image with FITC tool (refer to section Error!

Reference source not found., steps 2-5).

 FITC CEK File Map Example

When building the image, add FITC_CEK.bin file (Flash Image -> TXE Region -
> Configuration -> TXE -> CEK Configuration)

: Google* Widevine for Intel® TXE

88 Intel Confidential

E.1.1.2 Ciphertext CEK

Note: Customer should scope relevant Google* documentation and decide on CEK insertion

method. Intel recommended method is ciphertext

1. Generate a 16-byte Hex random number (unique per OEM) which is called CEK.

2. Create concatenated CEK||subjectname into one file (cek_sn.bin)
a. SubjectName can be found under \\System

Tools\Certificates\TXE1SubjectName.bin

3. Use openssl tool (open source tool) to convert the CEK certificate to *.pem format
a. CEK certificate can be found under \\System Tools\Certificates\

TXE1DrmCekKeyProvPreProduction.cer
b. Run openssl.exe x509 -inTXE1DrmCekKeyProvPreProduction.cer -inform

DER -out <TXE1DrmCekKeyProvPreProduction_CEK.pem> -outform PEM

4. Encrypt CEK:

a. Run: openssl.exe rsautl -encrypt -inkey
<TXE1DrmCekKeyProvPreProduction_CEK.pem> -certin -pkcs -in
cek_sn.bin -out en_cek_sn.bin

5. Insert en_cek_sn.bin into flash image with FITC tool (refer to section Error!
Reference source not found., steps 2-5)

: Google* Widevine for Intel® TXE

 Intel Confidential 89

E.2 Constructing Widevine* Provisioning
KeyBox File

To support Security Level 1 playback of protected content on Android devices,

Widevine Keybox must be provisioned by Customer in factory. This keybox contains a
device ID that is unique for each Android device and is the license that establishes a
root of trust between Widevine DRM servers and the Android device.

E.2.1 KeyBox Creation Procedure
1. Request KeyBox directly from Google.

2. Create appropriate unique 16-byte IV (Initialization Vector) for respective Android
device.

3. Encrypt keybox by global CEK and IV via AES-CBC encryption.

Example of encrypting KB with IV & CEK using AES-CBC:

openssl aes-128-cbc -nopad -K <16-byte-CEK> -iv <16-byte-IV> -in

GoogleKeyBox.bin -out EncryptedKB.bin

4. Write 16 bytes of IV, 128 bytes of encrypted keybox using FPT (refer to Widevine*

KeyBox Provisioning Procedure, Chapter 7)

 FPT KeyBox Provisioning File Map Example

